Ad
related to: relative minimum in a graph calculator
Search results
Results From The WOW.Com Content Network
If the domain X is a metric space, then f is said to have a local (or relative) maximum point at the point x ∗, if there exists some ε > 0 such that f(x ∗) ≥ f(x) for all x in X within distance ε of x ∗. Similarly, the function has a local minimum point at x ∗, if f(x ∗) ≤ f(x) for all x in X within distance ε of x ∗.
A saddle point (in red) on the graph of z = x 2 − y 2 (hyperbolic paraboloid). In mathematics, a saddle point or minimax point [1] is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. [2]
The stationary points are the red circles. In this graph, they are all relative maxima or relative minima. The blue squares are inflection points.. In mathematics, particularly in calculus, a stationary point of a differentiable function of one variable is a point on the graph of the function where the function's derivative is zero.
The dotted line in red represents a cut with three crossing edges. The dashed line in green represents one of the minimum cuts of this graph, crossing only two edges. [1] In graph theory, a minimum cut or min-cut of a graph is a cut (a partition of the vertices of a graph into two disjoint subsets) that is minimal in some metric.
Euclidean minimum spanning tree ⊆ relative neighborhood graph ⊆ Urquhart graph ⊆ Gabriel graph ⊆ Delaunay triangulation. [ 18 ] [ 19 ] Another graph guaranteed to contain the minimum spanning tree is the Yao graph , determined for points in the plane by dividing the plane around each point into six 60° wedges and connecting each point ...
A planar graph and its minimum spanning tree. Each edge is labeled with its weight, which here is roughly proportional to its length. A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight. [1]
The minimum degree of a graph is denoted by (), and is the minimum of 's vertices' degrees. In the multigraph shown on the right, the maximum degree is 5 and the minimum degree is 0. In a regular graph, every vertex has the same degree, and so we can speak of the degree of the graph.
The Gilbert–Varshamov bound is the best known in terms of relative distance for codes over alphabets of size less than 49. [ citation needed ] For larger alphabets, algebraic geometry codes sometimes achieve an asymptotically better rate vs. distance tradeoff than is given by the Gilbert–Varshamov bound.