Search results
Results From The WOW.Com Content Network
In mathematics, the method of clearing denominators, also called clearing fractions, is a technique for simplifying an equation equating two expressions that each are a sum of rational expressions – which includes simple fractions.
In mathematics, specifically in elementary arithmetic and elementary algebra, given an equation between two fractions or rational expressions, one can cross-multiply to simplify the equation or determine the value of a variable.
In the first step both numbers were divided by 10, which is a factor common to both 120 and 90. In the second step, they were divided by 3. The final result, 4 / 3 , is an irreducible fraction because 4 and 3 have no common factors other than 1.
If the numerator and the denominator are polynomials, as in + , the algebraic fraction is called a rational fraction (or rational expression). An irrational fraction is one that is not rational, as, for example, one that contains the variable under a fractional exponent or root, as in x + 2 x 2 − 3 {\displaystyle {\frac {\sqrt {x+2 ...
In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers ; they may be taken in any field K .
If the expressions a and b are polynomials, the algebraic fraction is called a rational algebraic fraction [1] or simply rational fraction. [2] [3] Rational fractions are also known as rational expressions.
The same syntactic expression 1 + 2 × 3 can have different values (mathematically 7, but also 9), depending on the order of operations implied by the context (See also Operations § Calculators). For real numbers , the product a × b × c {\displaystyle a\times b\times c} is unambiguous because ( a × b ) × c = a × ( b × c ) {\displaystyle ...