Search results
Results From The WOW.Com Content Network
The archetypical example is the real projective plane, also known as the extended Euclidean plane. [1] This example, in slightly different guises, is important in algebraic geometry, topology and projective geometry where it may be denoted variously by PG(2, R), RP 2, or P 2 (R), among other notations.
In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations.This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (projective space) and a selective set of basic geometric concepts.
Projective geometry is not necessarily concerned with curvature and the real projective plane may be twisted up and placed in the Euclidean plane or 3-space in many different ways. [1] Some of the more important examples are described below. The projective plane cannot be embedded (that is without intersection) in three-dimensional Euclidean space.
Rational Bézier curve – polynomial curve defined in homogeneous coordinates (blue) and its projection on plane – rational curve (red) In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work Der barycentrische Calcul, [1] [2] [3] are a system of coordinates used in projective geometry, just as Cartesian coordinates are used ...
C ∗ is also a projective plane, called the dual plane of C. If C and C ∗ are isomorphic, then C is called self-dual. The projective planes PG(2, K) for any field (or, more generally, for every division ring (skewfield) isomorphic to its dual) K are self-dual. In particular, Desarguesian planes of finite order are always self-dual.
The standard examples are the nondegenerate projective conic sections. In pappian projective planes of even order greater than four there are ovals which are not conics. In an infinite plane there exist ovals, which are not conics. In the real plane one just glues a half of a circle and a suitable ellipse smoothly.
Configurations (4 3 6 2) (a complete quadrangle, at left) and (6 2 4 3) (a complete quadrilateral, at right).. In mathematics, specifically projective geometry, a configuration in the plane consists of a finite set of points, and a finite arrangement of lines, such that each point is incident to the same number of lines and each line is incident to the same number of points.
The archetypical example is the real projective plane, also known as the extended Euclidean plane. [4] This example, in slightly different guises, is important in algebraic geometry, topology and projective geometry where it may be denoted variously by PG(2, R), RP 2, or P 2 (R), among other notations. There are many other projective planes ...