Ad
related to: chatbot with hugging face transformers checkpointing in spark plug changesap.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
Generative Pre-trained Transformer 2 (GPT-2) is a large language model by OpenAI and the second in their foundational series of GPT models. GPT-2 was pre-trained on a dataset of 8 million web pages. [ 2 ]
The company was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf in New York City, originally as a company that developed a chatbot app targeted at teenagers. [1] The company was named after the U+1F917 珞 HUGGING FACE emoji. [1]
GPT-J or GPT-J-6B is an open-source large language model (LLM) developed by EleutherAI in 2021. [1] As the name suggests, it is a generative pre-trained transformer model designed to produce human-like text that continues from a prompt.
One of the original and now most common means of application checkpointing was a "save state" feature in interactive applications, in which the user of the application could save the state of all variables and other data and either continue working or exit the application and restart the application and restore the saved state at a later time.
GPT-4o ("o" for "omni") is a multilingual, multimodal generative pre-trained transformer developed by OpenAI and released in May 2024. [1] GPT-4o is free, but ChatGPT Plus subscribers have higher usage limits. [2] It can process and generate text, images and audio. [3]
T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [ 1 ] [ 2 ] Like the original Transformer model, [ 3 ] T5 models are encoder-decoder Transformers , where the encoder processes the input text, and the decoder generates the output text.
Claude is a family of large language models developed by Anthropic. [1] [2] The first model was released in March 2023.The Claude 3 family, released in March 2024, consists of three models: Haiku optimized for speed, Sonnet balancing capabilities and performance, and Opus designed for complex reasoning tasks.
Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.