When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Jordan curve theorem - Wikipedia

    en.wikipedia.org/wiki/Jordan_curve_theorem

    A Jordan curve or a simple closed curve in the plane R 2 is the image C of an injective continuous map of a circle into the plane, φ: S 1 → R 2. A Jordan arc in the plane is the image of an injective continuous map of a closed and bounded interval [a, b] into the plane. It is a plane curve that is not necessarily smooth nor algebraic.

  3. Curve - Wikipedia

    en.wikipedia.org/wiki/Curve

    A non-closed curve may also be called an open curve. If the domain of a topological curve is a closed and bounded interval = [,], the curve is called a path, also known as topological arc (or just arc). A curve is simple if it is the image of an interval or a circle by an injective continuous function.

  4. Convex curve - Wikipedia

    en.wikipedia.org/wiki/Convex_curve

    By the Jordan curve theorem, a simple closed curve divides the plane into interior and exterior regions, and another equivalent definition of a closed convex curve is that it is a simple closed curve whose union with its interior is a convex set. [9] [17] Examples of open and unbounded convex curves include the graphs of convex functions.

  5. Schoenflies problem - Wikipedia

    en.wikipedia.org/wiki/Schoenflies_problem

    Given a simple closed polygonal curve in the plane, the piecewise linear Jordan–Schoenflies theorem states that there is a piecewise linear homeomorphism of the plane, with compact support, carrying the polygon onto a triangle and taking the interior and exterior of one onto the interior and exterior of the other.

  6. Inscribed square problem - Wikipedia

    en.wikipedia.org/wiki/Inscribed_square_problem

    The inscribed square problem, also known as the square peg problem or the Toeplitz' conjecture, is an unsolved question in geometry: Does every plane simple closed curve contain all four vertices of some square? This is true if the curve is convex or piecewise smooth and in other special cases.

  7. Curve-shortening flow - Wikipedia

    en.wikipedia.org/wiki/Curve-shortening_flow

    Because every other simple closed curve converges to a circle, the circle is the only simple closed curve that keeps its shape under the curve-shortening flow. However, there are many other examples of curves that are either non-simple (they include self-crossings) or non-closed (they extend to infinity) and keep their shape. In particular, [36]

  8. Jordan's theorem - Wikipedia

    en.wikipedia.org/wiki/Jordan's_theorem

    The Jordan curve theorem states that every simple closed curve has a well-defined "inside" and "outside";

  9. Klein bottle - Wikipedia

    en.wikipedia.org/wiki/Klein_bottle

    One description of the types of simple-closed curves that may appear on the surface of the Klein bottle is given by the use of the first homology group of the Klein bottle calculated with integer coefficients. This group is isomorphic to Z×Z 2. Up to reversal of orientation, the only homology classes which contain simple-closed curves are as ...