Search results
Results From The WOW.Com Content Network
In asymptotic analysis in general, one sequence () that converges to a limit is said to asymptotically converge to with a faster order of convergence than another sequence () that converges to in a shared metric space with distance metric | |, such as the real numbers or complex numbers with the ordinary absolute difference metrics, if
In numerical analysis, Aitken's delta-squared process or Aitken extrapolation is a series acceleration method used for accelerating the rate of convergence of a sequence. It is named after Alexander Aitken, who introduced this method in 1926. [1] It is most useful for accelerating the convergence of a sequence that is converging linearly.
Since the secant method can carry out twice as many steps in the same time as Steffensen's method, [b] in practical use the secant method actually converges faster than Steffensen's method, when both algorithms succeed: The secant method achieves a factor of about (1.6) 2 ≈ 2.6 times as many digits for every two steps (two function ...
In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method , so it is considered a quasi-Newton method .
The rate of convergence must be chosen carefully, though, usually h ∝ n −1/5. In many cases, highly accurate results for finite samples can be obtained via numerical methods (i.e. computers); even in such cases, though, asymptotic analysis can be useful. This point was made by Small (2010, §1.4), as follows.
If the result of the secant method, s, lies strictly between b k and m, then it becomes the next iterate (b k+1 = s), otherwise the midpoint is used (b k+1 = m). Then, the value of the new contrapoint is chosen such that f(a k+1) and f(b k+1) have opposite signs. If f(a k) and f(b k+1) have opposite signs, then the contrapoint remains the same ...
Two classical techniques for series acceleration are Euler's transformation of series [1] and Kummer's transformation of series. [2] A variety of much more rapidly convergent and special-case tools have been developed in the 20th century, including Richardson extrapolation, introduced by Lewis Fry Richardson in the early 20th century but also known and used by Katahiro Takebe in 1722; the ...
Sidi's generalized secant method is a root-finding algorithm, that is, a numerical method for solving equations of the form () =.The method was published by Avram Sidi. [1]The method is a generalization of the secant method.