When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Position and momentum spaces - Wikipedia

    en.wikipedia.org/wiki/Position_and_momentum_spaces

    Position space (also real space or coordinate space) is the set of all position vectors r in Euclidean space, and has dimensions of length; a position vector defines a point in space. (If the position vector of a point particle varies with time, it will trace out a path, the trajectory of a particle.) Momentum space is the set of all momentum ...

  3. Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger_equation

    The Schrödinger equation is often presented using quantities varying as functions of position, but as a vector-operator equation it has a valid representation in any arbitrary complete basis of kets in Hilbert space. As mentioned above, "bases" that lie outside the physical Hilbert space are also employed for calculational purposes.

  4. Phase-space formulation - Wikipedia

    en.wikipedia.org/wiki/Phase-space_formulation

    The phase-space formulation is a formulation of quantum mechanics that places the position and momentum variables on equal footing in phase space.The two key features of the phase-space formulation are that the quantum state is described by a quasiprobability distribution (instead of a wave function, state vector, or density matrix) and operator multiplication is replaced by a star product.

  5. Momentum operator - Wikipedia

    en.wikipedia.org/wiki/Momentum_operator

    The derivation in three dimensions is the same, except the gradient operator del is used instead of one partial derivative. In three dimensions, the plane wave solution to Schrödinger's equation is: = and the gradient is = + + = (+ +) = where e x, e y, and e z are the unit vectors for the three spatial dimensions, hence ^ =

  6. Mathematical formulation of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    A classical description can be given in a fairly direct way by a phase space model of mechanics: states are points in a phase space formulated by symplectic manifold, observables are real-valued functions on it, time evolution is given by a one-parameter group of symplectic transformations of the phase space, and physical symmetries are ...

  7. and this is the Schrödinger equation. Note that the normalization of the path integral needs to be fixed in exactly the same way as in the free particle case. An arbitrary continuous potential does not affect the normalization, although singular potentials require careful treatment.

  8. Stochastic quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Stochastic_quantum_mechanics

    The stochastic interpretation interprets the paths in the path integral formulation of quantum mechanics as the sample paths of a stochastic process. [9] It posits that quantum particles are localized on one of these paths, but observers cannot predict with certainty where the particle is localized.

  9. Path integral formulation - Wikipedia

    en.wikipedia.org/wiki/Path_integral_formulation

    The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics.It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.