Search results
Results From The WOW.Com Content Network
The circle diagram can be drawn for alternators, synchronous motors, transformers, induction motors. The Heyland diagram is an approximate representation of a circle diagram applied to induction motors, which assumes that stator input voltage, rotor resistance and rotor reactance are constant and stator resistance and core loss are zero.
In the blocked rotor test, the rotor is locked securely enough that it cannot break free. [5] A low voltage is applied on the stator terminals so that there is full load current in the stator winding, and the current, voltage and power input are measured at that point. When the rotor is stationary, the slip, =. [6]
Induction motors are most commonly run on single-phase or three-phase power, but two-phase motors exist; in theory, induction motors can have any number of phases. Many single-phase motors having two windings can be viewed as two-phase motors, since a capacitor is used to generate a second power phase 90° from the single-phase supply and feeds ...
The motor always turns slightly slower than the synchronous speed. The difference between synchronous and operating speed is called "slip" and is often expressed as percent of the synchronous speed. For example, a motor operating at 1450 RPM that has a synchronous speed of 1500 RPM is running at a slip of +3.3%. In operation as a motor, the ...
A wound-rotor motor, also known as slip ring-rotor motor, is a type of induction motor where the rotor windings are connected through slip rings to external resistance. Adjusting the resistance allows control of the speed/torque characteristic of the motor.
By adjusting the shape of the bars in the rotor, the speed-torque characteristics of the motor can be changed, to minimize starting current or to maximize low-speed torque, for example. Squirrel-cage induction motors are very prevalent in industry, in sizes from below 1 kilowatt (1.3 hp) up to tens of megawatts (tens-of-thousand horsepower).
A slip-controlled wound-rotor induction motor (WRIM) drive controls speed by varying motor slip via rotor slip rings either by electronically recovering slip power fed back to the stator bus or by varying the resistance of external resistors in the rotor circuit. Along with eddy current drives, resistance-based WRIM drives have lost popularity ...
A linear induction motor (LIM) is an alternating current (AC), asynchronous linear motor that works by the same general principles as other induction motors but is typically designed to directly produce motion in a straight line. Characteristically, linear induction motors have a finite primary or secondary length, which generates end-effects ...