Search results
Results From The WOW.Com Content Network
The hyperexponential distribution is an example of a mixture density. An example of a hyperexponential random variable can be seen in the context of telephony, where, if someone has a modem and a phone, their phone line usage could be modeled as a hyperexponential distribution where there is probability p of them talking on the phone with rate ...
Hyperexponential distribution (also called a mixture of exponential) – 2 or more non-identical phases, that each have a probability of occurring in a mutually exclusive, or parallel, manner. (Note: The exponential distribution is the degenerate situation when all the parallel phases are identical.)
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
Hyperexponential can refer to: The hyperexponential distribution in probability. Tetration, also known as hyperexponentiation. This page was last edited on 4 ...
The Cauchy distribution, an example of a distribution which does not have an expected value or a variance. In physics it is usually called a Lorentzian profile, and is associated with many processes, including resonance energy distribution, impact and natural spectral line broadening and quadratic stark line broadening.
move to sidebar hide. From Wikipedia, the free encyclopedia
In probability theory and statistics, the gamma distribution is a versatile two-parameter family of continuous probability distributions. [1] The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. [2] There are two equivalent parameterizations in common use:
Examples of data sequences that exhibit local variations in p like this include the eigenvalue deviations of the Gaussian Orthogonal and Unitary Ensembles. [8] The Tweedie compound Poisson–gamma distribution has served to model multifractality based on local variations in the Tweedie exponent α.