Search results
Results From The WOW.Com Content Network
In Euclidean plane geometry, a rectangle is a rectilinear convex polygon or a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square.
A rectilinear polygon is a polygon all of whose sides meet at right angles. Thus the interior angle at each vertex is either 90° or 270°. Rectilinear polygons are a special case of isothetic polygons. In many cases another definition is preferable: a rectilinear polygon is a polygon with sides parallel to the axes of Cartesian coordinates ...
A pentagon is a five-sided polygon. A regular pentagon has 5 equal edges and 5 equal angles. In geometry, a polygon is traditionally a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain.
If it has four lines of reflectional symmetry, it is a square. The perimeter of a parallelogram is 2( a + b ) where a and b are the lengths of adjacent sides. Unlike any other convex polygon, a parallelogram cannot be inscribed in any triangle with less than twice its area.
[citation needed] Further, congruent sides in the original polygon yields congruent angles in the dual, and conversely. For example, the dual of a highly acute isosceles triangle is an obtuse isosceles triangle. In the Dorman Luke construction, each face of a dual polyhedron is the dual polygon of the corresponding vertex figure.
Any straight-sided digon is regular even though it is degenerate, because its two edges are the same length and its two angles are equal (both being zero degrees). As such, the regular digon is a constructible polygon. [3] Some definitions of a polygon do not consider the digon to be a proper polygon because of its degeneracy in the Euclidean ...
Any polygon has as many corners as it has sides. Each corner has several angles. The two most important ones are: Interior angle – The sum of the interior angles of a simple n-gon is (n − 2) × π radians or (n − 2) × 180 degrees.
The convex forms are listed in order of degree of vertex configurations from 3 faces/vertex and up, and in increasing sides per face. This ordering allows topological similarities to be shown. There are infinitely many prisms and antiprisms, one for each regular polygon; the ones up to the 12-gonal cases are listed.