When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Photon - Wikipedia

    en.wikipedia.org/wiki/Photon

    If photons were not purely massless, their speeds would vary with frequency, with lower-energy (redder) photons moving slightly slower than higher-energy photons. Relativity would be unaffected by this; the so-called speed of light, c , would then not be the actual speed at which light moves, but a constant of nature which is the upper bound on ...

  3. James Prescott Joule - Wikipedia

    en.wikipedia.org/wiki/James_Prescott_Joule

    James Joule was born in 1818, the son of Benjamin Joule (1784–1858), a wealthy brewer, and his wife, Alice Prescott, on New Bailey Street in Salford. [3] Joule was tutored as a young man by the famous scientist John Dalton and was strongly influenced by chemist William Henry and Manchester engineers Peter Ewart and Eaton Hodgkinson.

  4. James Clerk Maxwell - Wikipedia

    en.wikipedia.org/wiki/James_Clerk_Maxwell

    James Clerk Maxwell FRS FRSE (13 June 1831 – 5 November 1879) was a Scottish physicist and mathematician [1] who was responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and light as different manifestations of the same phenomenon.

  5. Electromagnetic spectrum - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_spectrum

    The wave-particle debate was rekindled in 1901 when Max Planck discovered that light is absorbed only in discrete "quanta", now called photons, implying that light has a particle nature. This idea was made explicit by Albert Einstein in 1905, but never accepted by Planck and many other contemporaries.

  6. Electromagnetic radiation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_radiation

    As a wave, light is characterized by a velocity (the speed of light), wavelength, and frequency. As particles, light is a stream of photons. Each has an energy related to the frequency of the wave given by Planck's relation E = hf, where E is the energy of the photon, h is the Planck constant, 6.626 × 10 −34 J·s, and f is the frequency of ...

  7. Light - Wikipedia

    en.wikipedia.org/wiki/Light

    Light exerts physical pressure on objects in its path, a phenomenon which can be deduced by Maxwell's equations, but can be more easily explained by the particle nature of light: photons strike and transfer their momentum. Light pressure is equal to the power of the light beam divided by c, the speed of light.

  8. History of optics - Wikipedia

    en.wikipedia.org/wiki/History_of_optics

    Quantum optics is the study of the nature and effects of light as quantized photons. The first indication that light might be quantized came from Max Planck in 1899 when he correctly modelled blackbody radiation by assuming that the exchange of energy between light and matter only occurred in discrete amounts he called quanta. It was unknown ...

  9. Max Planck - Wikipedia

    en.wikipedia.org/wiki/Max_Planck

    Physicists now call these quanta photons, and a photon of frequency ν will have its own specific and unique energy. The total energy at that frequency is then equal to hν multiplied by the number of photons at that frequency. Planck in 1918, the year he was awarded the Nobel Prize in Physics for his work on quantum theory