Search results
Results From The WOW.Com Content Network
This is equivalent to the above definition of the 2D mean diameter. However, for historical reasons, the hydraulic radius is defined as the cross-sectional area of a pipe A , divided by its wetted perimeter P , which leads to D H = 4 R H {\displaystyle D_{\text{H}}=4R_{\text{H}}} , and the hydraulic radius is half of the 2D mean radius.
To construct a diameter parallel to a given line, choose the chord to be perpendicular to the line. The circle having a given line segment as its diameter can be constructed by straightedge and compass, by finding the midpoint of the segment and then drawing the circle centered at the midpoint through one of the ends of the line segment.
an object of diameter 1 AU (149 597 871 km) at a distance of 1 parsec (pc) Thus, the angular diameter of Earth's orbit around the Sun as viewed from a distance of 1 pc is 2″, as 1 AU is the mean radius of Earth's orbit. The angular diameter of the Sun, from a distance of one light-year, is 0.03″, and that of Earth 0.0003″. The angular ...
For example, it is used to calculate flow through circular and non-circular tubes in order to examine flow conditions (i.e., the Reynolds number). In those cases, the characteristic length is the diameter of the pipe or, in case of non-circular tubes, its hydraulic diameter D h {\displaystyle D_{h}} :
The hydraulic diameter, D H, is a commonly used term when handling flow in non-circular tubes and channels. Using this term, one can calculate many things in the same way as for a round tube. When the cross-section is uniform along the tube or channel length, it is defined as [1] [2] =, where
In forestry, quadratic mean diameter or QMD is a measure of central tendency which is considered more appropriate than arithmetic mean for characterizing the group of trees which have been measured. For n trees, QMD is calculated using the quadratic mean formula:
Since the diameter is twice the radius, the "missing" part of the diameter is (2r − x) in length. Using the fact that one part of one chord times the other part is equal to the same product taken along a chord intersecting the first chord, we find that (2r − x)x = (y / 2) 2. Solving for r, we find the required result.
As the definition of the unit contains π, it is easy to calculate area values in circular mils when the diameter in mils is known. The area in circular mils, A, of a circle with a diameter of d mils, is given by the formula: {} = {}.