Ads
related to: reflections and translations practice handout 3rd graders math printable
Search results
Results From The WOW.Com Content Network
An exploration of transformation geometry often begins with a study of reflection symmetry as found in daily life. The first real transformation is reflection in a line or reflection against an axis. The composition of two reflections results in a rotation when the lines intersect, or a translation when they are parallel.
Call the images of p 2 and p 3 under this reflection p 2 ′ and p 3 ′. If q 2 is distinct from p 2 ′, bisect the angle at q 1 with a new mirror. With p 1 and p 2 now in place, p 3 is at p 3 ″; and if it is not in place, a final mirror through q 1 and q 2 will flip it to q 3. Thus at most three reflections suffice to reproduce any plane ...
(A reflection would not preserve handedness; for instance, it would transform a left hand into a right hand.) To avoid ambiguity, a transformation that preserves handedness is known as a rigid motion, a Euclidean motion, or a proper rigid transformation. In dimension two, a rigid motion is either a translation or a rotation.
Combining two equal glide plane operations gives a pure translation with a translation vector that is twice that of the glide reflection, so the even powers of the glide reflection form a translation group. In the case of glide-reflection symmetry, the symmetry group of an object contains a glide reflection and the group generated by it. For ...
As an example, consider the dihedral group G = D 3 = Sym(X), where X is an equilateral triangle. We may decorate this with an arrow on one edge, obtaining an asymmetric figure X #. Letting τ ∈ G be the reflection of the arrowed edge, the composite figure X + = X # ∪ τX # has a bidirectional arrow on that edge, and its symmetry group is H ...
The composition of two offset point reflections in 2-dimensions is a translation. The composition of two point reflections is a translation. [3] Specifically, point reflection at p followed by point reflection at q is translation by the vector 2(q − p). The set consisting of all point reflections and translations is Lie subgroup of the ...