Search results
Results From The WOW.Com Content Network
A convex polyhedron whose faces are regular polygons is known as a Johnson solid, or sometimes as a Johnson–Zalgaller solid. Some authors exclude uniform polyhedra from the definition. A uniform polyhedron is a polyhedron in which the faces are regular and they are isogonal ; examples include Platonic and Archimedean solids as well as prisms ...
A polytope is a geometric object with flat sides, which exists in any general number of dimensions. The following list of polygons, polyhedra and polytopes gives the names of various classes of polytopes and lists some specific examples.
Important classes of convex polyhedra include the family of prismatoid, the Platonic solids, the Archimedean solids and their duals the Catalan solids, and the regular polygonal faces polyhedron. The prismatoids are the polyhedron whose vertices lie on two parallel planes and their faces are likely to be trapezoids and triangles. [18]
Edge, a 1-dimensional element; Face, a 2-dimensional element; Cell, a 3-dimensional element; Hypercell or Teron, a 4-dimensional element; Facet, an (n-1)-dimensional element; Ridge, an (n-2)-dimensional element; Peak, an (n-3)-dimensional element; For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and ...
[W] Wenninger, 1974, has 119 figures: 1–5 for the Platonic solids, 6–18 for the Archimedean solids, 19–66 for stellated forms including the 4 regular nonconvex polyhedra, and ended with 67–119 for the nonconvex uniform polyhedra.
The thirteen Archimedean solids Name Solids Vertex configurations [4] Faces [5] Edges [5] Vertices [5] Point group [6] Truncated tetrahedron: 3.6.6: 4 triangles 4 hexagons: 18 12 T d: Cuboctahedron: 3.4.3.4: 8 triangles 6 squares: 24 12 O h: Truncated cube: 3.8.8: 8 triangles 6 octagons: 36 24 O h: Truncated octahedron: 4.6.6: 6 squares 8 ...
A Johnson solid is a convex polyhedron whose faces are all regular polygons. [1] Here, a polyhedron is said to be convex if the shortest path between any two of its vertices lies either within its interior or on its boundary, none of its faces are coplanar (meaning they do not share the same plane, and do not "lie flat"), and none of its edges are colinear (meaning they are not segments of the ...
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra: