Search results
Results From The WOW.Com Content Network
A completely different approach to function generation is to use software instructions to generate a waveform, with provision for output. For example, a general-purpose digital computer can be used to generate the waveform; if frequency range and amplitude are acceptable, the sound card fitted to most computers can be used to output the generated wave.
There are various types of generating functions, including ordinary generating functions, exponential generating functions, Lambert series, Bell series, and Dirichlet series. Every sequence in principle has a generating function of each type (except that Lambert and Dirichlet series require indices to start at 1 rather than 0), but the ease ...
A generator is very similar to a function that returns an array, in that a generator has parameters, can be called, and generates a sequence of values. However, instead of building an array containing all the values and returning them all at once, a generator yields the values one at a time, which requires less memory and allows the caller to ...
The fixed point iteration x n+1 = cos x n with initial value x 1 = −1.. An attracting fixed point of a function f is a fixed point x fix of f with a neighborhood U of "close enough" points around x fix such that for any value of x in U, the fixed-point iteration sequence , (), (()), ((())), … is contained in U and converges to x fix.
The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.
For example, the function that associates to each point of a fluid its velocity vector is a vector-valued function. Some vector-valued functions are defined on a subset of R n {\displaystyle \mathbb {R} ^{n}} or other spaces that share geometric or topological properties of R n {\displaystyle \mathbb {R} ^{n}} , such as manifolds .
A sigmoid function is a bounded, differentiable, real function that is defined for all real input values and has a non-negative derivative at each point [1] [2] and exactly one inflection point. Properties
Fixed-point computation refers to the process of computing an exact or approximate fixed point of a given function. [1] In its most common form, the given function f {\displaystyle f} satisfies the condition to the Brouwer fixed-point theorem : that is, f {\displaystyle f} is continuous and maps the unit d -cube to itself.