Search results
Results From The WOW.Com Content Network
Suppose a zero-sum game has a payoff matrix M where element M i,j is the payoff obtained when the minimizing player chooses pure strategy i and the maximizing player chooses pure strategy j (i.e. the player trying to minimize the payoff chooses the row and the player trying to maximize the payoff chooses the column).
If the participants' total gains are added up and their total losses subtracted, the sum will be zero. The game can be written in a payoff matrix (pictured right - from Even's point of view). Each cell of the matrix shows the two players' payoffs, with Even's payoffs listed first.
The concept of a mixed-strategy equilibrium was introduced by John von Neumann and Oskar Morgenstern in their 1944 book The Theory of Games and Economic Behavior, but their analysis was restricted to the special case of zero-sum games. They showed that a mixed-strategy Nash equilibrium will exist for any zero-sum game with a finite set of ...
In the context of two-player zero-sum games, the sets and correspond to the strategy sets of the first and second player, respectively, which consist of lotteries over their actions (so-called mixed strategies), and their payoffs are defined by the payoff matrix.
In two-player zero-sum games, the minimax solution is the same as the Nash equilibrium. In the context of zero-sum games, the minimax theorem is equivalent to: [4] [failed verification] For every two-person zero-sum game with finitely many strategies, there exists a value V and a mixed strategy for each player, such that
Solving mean payoff games can be shown to be polynomial-time equivalent to many core problems concerning tropical linear programming. [8] Another closely related game to the mean payoff game is the energy game, in which the Maximizer tries to maximize the smallest cumulative sum within the play instead of the long-term average.
In his 1938 book Applications aux Jeux de Hasard and earlier notes, Émile Borel proved a minimax theorem for two-person zero-sum matrix games only when the pay-off matrix is symmetric and provided a solution to a non-trivial infinite game (known in English as Blotto game).
The normal-form representation of a game includes all perceptible and conceivable strategies, and their corresponding payoffs, for each player. In static games of complete, perfect information, a normal-form representation of a game is a specification of players' strategy spaces and payoff functions. A strategy space for a player is the set of ...