Search results
Results From The WOW.Com Content Network
N-Bromosuccinimide or NBS is a chemical reagent used in radical substitution, electrophilic addition, and electrophilic substitution reactions in organic chemistry. NBS can be a convenient source of Br • , the bromine radical.
The Wohl–Ziegler reaction [1] [2] is a chemical reaction that involves the allylic or benzylic bromination of hydrocarbons using an N-bromosuccinimide and a radical initiator. [3] Best yields are achieved with N-bromosuccinimide in carbon tetrachloride solvent. Several reviews have been published. [4] [5]
Structure of N-bromosuccinimide, a common brominating reagent in organic chemistry. Like the other carbon–halogen bonds, the C–Br bond is a common functional group that forms part of core organic chemistry. Formally, compounds with this functional group may be considered organic derivatives of the bromide anion.
Several reagents can be substituted for bromine. Sodium hypochlorite, [4] lead tetraacetate, [5] N-bromosuccinimide, and (bis(trifluoroacetoxy)iodo)benzene [6] can effect a Hofmann rearrangement. The intermediate isocyanate can be trapped with various nucleophiles to form stable carbamates or other products rather than undergoing decarboxylation.
Free-radical reactions depend on one or more relatively weak bonds in a reagent. Under reaction conditions (typically heat or light), some weak bonds homolyse into radicals, which then induce further decomposition in their compatriots before recombination. Different mechanisms typically apply to reagents without such a weak bond.
Structure of N-bromosuccinimide, a common brominating reagent in organic chemistry. Like the other carbon–halogen bonds, the C–Br bond is a common functional group that forms part of core organic chemistry. Formally, compounds with this functional group may be considered organic derivatives of the bromide anion.
The Bouveault aldehyde synthesis (also known as the Bouveault reaction) is a one-pot substitution reaction that replaces an alkyl or aryl halide with a formyl group using a N,N-disubstituted formamide. [1] [2] For primary alkyl halides this produces the homologous aldehyde one carbon longer. For aryl halides this produces the corresponding ...
Lithium, magnesium, and calcium [12] alkylperoxides have also been employed as asymmetric nucleophilic epoxidation reagents. Simple tartrate and pseudoephedrine ligands are effective in combination with these metals; however, little detailed information about the precise mechanisms of these systems is known.