Search results
Results From The WOW.Com Content Network
The Z-ordering can be used to efficiently build a quadtree (2D) or octree (3D) for a set of points. [4] [5] The basic idea is to sort the input set according to Z-order.Once sorted, the points can either be stored in a binary search tree and used directly, which is called a linear quadtree, [6] or they can be used to build a pointer based quadtree.
[2] [3] Thus, in the expression 1 + 2 × 3, the multiplication is performed before addition, and the expression has the value 1 + (2 × 3) = 7, and not (1 + 2) × 3 = 9. When exponents were introduced in the 16th and 17th centuries, they were given precedence over both addition and multiplication and placed as a superscript to the right of ...
In mathematics, some functions or groups of functions are important enough to deserve their own names. This is a listing of articles which explain some of these functions in more detail. There is a large theory of special functions which developed out of statistics and mathematical physics.
A sequence may start with an index different from 1 or 0. For example, the sequence defined by x n = 1/ log ( n ) would be defined only for n ≥ 2. When talking about such infinite sequences, it is usually sufficient (and does not change much for most considerations) to assume that the members of the sequence are defined at least for all ...
So for example if n is 5, the index cannot be 15 even though this divides 5!, because there is no subgroup of order 15 in S 5. In the case of n = 2 this gives the rather obvious result that a subgroup H of index 2 is a normal subgroup, because the normal subgroup of H must have index 2 in G and therefore be identical to H .
AC – Axiom of Choice, [1] or set of absolutely continuous functions. a.c. – absolutely continuous. acrd – inverse chord function. ad – adjoint representation (or adjoint action) of a Lie group. adj – adjugate of a matrix. a.e. – almost everywhere. AFSOC - Assume for the sake of contradiction; Ai – Airy function. AL – Action limit.
A vector treated as an array of numbers by writing as a row vector or column vector (whichever is used depends on convenience or context): = (), = Index notation allows indication of the elements of the array by simply writing a i, where the index i is known to run from 1 to n, because of n-dimensions. [1]
In mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value () of some function. An important class of pointwise concepts are the pointwise operations, that is, operations defined on functions by applying the operations to function values separately for each point in the domain of definition.