Search results
Results From The WOW.Com Content Network
Electric eel skeleton, with the long vertebral column at top, the row of bony rays below. Electric eels have long, stout bodies, being somewhat cylindrical at the front but more flattened towards the tail end. E. electricus can reach 2 m (6 ft 7 in) in length, and 20 kg (44 lb) in weight. The mouth is at the front of the snout, and opens upwards.
Electric eels use electricity in multiple ways. Low voltages are used to sense the surrounding environment. High voltages are used to detect prey and, separately, stun them, at which point the electric eel applies a suction-feeding bite. [12] Anatomy of an electric eel's electric organs. Sachs' organ is associated with electrolocation. Inside ...
Both are used to locate prey; stronger electric discharges are used in a few groups of fishes (most famously the electric eel, which is not actually an eel but a knifefish) to stun prey. The capabilities are found almost exclusively in aquatic or amphibious animals, since water is a much better conductor of electricity than air.
The electric discharge pattern of bluntnose knifefishes is similar to the low voltage electrolocative discharge of the electric eel. This is thought to be a form of bluffing Batesian mimicry of the powerfully protected electric eel. [28] Fish that prey on electrolocating fish may "eavesdrop" [29] on the discharges of their prey to detect them.
Electric eel anatomy: first detail shows electric organs, made of stacks of electrocytes. Second detail shows an individual cell with ion channels and pumps through the cell membrane; A nerve cell's terminal buttons are releasing neurotransmitters to trigger electrical activity. Final detail shows coiled protein chains of an ion channel.
For premium support please call: 800-290-4726 more ways to reach us
The term "eel" is also used for some other eel-shaped fish, such as electric eels (genus Electrophorus), swamp eels (order Synbranchiformes), and deep-sea spiny eels (family Notacanthidae). However, these other clades , with the exception of deep-sea spiny eels, whose order Notacanthiformes is the sister clade to true eels, evolved their eel ...
This trial illustrates why eels need to track prey despite being able to inactive prey voluntary movement with the high-voltage discharge. Note also the eel's fast reversal to capture the prey during the high-voltage discharge. This latter behavior is common in weakly electric fish during electrosensory guided prey capture.