Search results
Results From The WOW.Com Content Network
The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it. The figure on the right is the suffix tree for the strings "ABAB", "BABA" and "ABBA", padded with unique string ...
In computer science, a substring index is a data structure which gives substring search in a text or text collection in sublinear time. Once constructed from a document or set of documents, a substring index can be used to locate all occurrences of a pattern in time linear or near-linear in the pattern size, with no dependence or only logarithmic dependence on the document size.
The string spelled by the edges from the root to such a node is a longest repeated substring. The problem of finding the longest substring with at least k {\displaystyle k} occurrences can be solved by first preprocessing the tree to count the number of leaf descendants for each internal node, and then finding the deepest node with at least k ...
A string-searching algorithm, sometimes called string-matching algorithm, is an algorithm that searches a body of text for portions that match by pattern. A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet ( finite set ) Σ.
After computing E(i, j) for all i and j, we can easily find a solution to the original problem: it is the substring for which E(m, j) is minimal (m being the length of the pattern P.) Computing E(m, j) is very similar to computing the edit distance between two strings.
A string is a substring (or factor) [1] of a string if there exists two strings and such that =.In particular, the empty string is a substring of every string. Example: The string = ana is equal to substrings (and subsequences) of = banana at two different offsets:
However, as observed e.g., by Apostolico, Breslauer & Galil (1995), the same algorithm can also be used to find all maximal palindromic substrings anywhere within the input string, again in () time. Therefore, it provides an ()-time solution to the longest palindromic substring problem.
We assume all the substrings have a fixed length m. A naïve way to search for k patterns is to repeat a single-pattern search taking O(n+m) time, totaling in O((n+m)k) time. In contrast, the above algorithm can find all k patterns in O(n+km) expected time, assuming that a hash table check works in O(1) expected time.