When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The concept of information entropy was introduced by Claude Shannon in his 1948 paper "A Mathematical Theory of Communication", [2] [3] and is also referred to as Shannon entropy. Shannon's theory defines a data communication system composed of three elements: a source of data, a communication channel, and a receiver. The "fundamental problem ...

  3. Shannon–Fano coding - Wikipedia

    en.wikipedia.org/wiki/Shannon–Fano_coding

    For another, both Shannon’s and Fano’s coding schemes are similar in the sense that they both are efficient, but suboptimal prefix-free coding schemes with a similar performance. Shannon's (1948) method, using predefined word lengths, is called Shannon–Fano coding by Cover and Thomas, [ 4 ] Goldie and Pinch, [ 5 ] Jones and Jones, [ 6 ...

  4. Entropy coding - Wikipedia

    en.wikipedia.org/wiki/Entropy_coding

    In information theory, an entropy coding (or entropy encoding) is any lossless data compression method that attempts to approach the lower bound declared by Shannon's source coding theorem, which states that any lossless data compression method must have an expected code length greater than or equal to the entropy of the source.

  5. Shannon coding - Wikipedia

    en.wikipedia.org/wiki/Shannon_coding

    In the field of data compression, Shannon coding, named after its creator, Claude Shannon, is a lossless data compression technique for constructing a prefix code based on a set of symbols and their probabilities (estimated or measured).

  6. Shannon's source coding theorem - Wikipedia

    en.wikipedia.org/wiki/Shannon's_source_coding...

    In information theory, the source coding theorem (Shannon 1948) [2] informally states that (MacKay 2003, pg. 81, [3] Cover 2006, Chapter 5 [4]): N i.i.d. random variables each with entropy H(X) can be compressed into more than N H(X) bits with negligible risk of information loss, as N → ∞; but conversely, if they are compressed into fewer than N H(X) bits it is virtually certain that ...

  7. Information theory - Wikipedia

    en.wikipedia.org/wiki/Information_theory

    This equation gives the entropy in the units of "bits" (per symbol) because it uses a logarithm of base 2, and this base-2 measure of entropy has sometimes been called the shannon in his honor. Entropy is also commonly computed using the natural logarithm (base e, where e is Euler's number), which produces a measurement of entropy in nats per ...

  8. Shannon–Fano–Elias coding - Wikipedia

    en.wikipedia.org/wiki/Shannon–Fano–Elias_coding

    In information theory, Shannon–Fano–Elias coding is a precursor to arithmetic coding, in which probabilities are used to determine codewords. [1] It is named for Claude Shannon , Robert Fano , and Peter Elias .

  9. Noisy-channel coding theorem - Wikipedia

    en.wikipedia.org/wiki/Noisy-channel_coding_theorem

    In information theory, the noisy-channel coding theorem (sometimes Shannon's theorem or Shannon's limit), establishes that for any given degree of noise contamination of a communication channel, it is possible (in theory) to communicate discrete data (digital information) nearly error-free up to a computable maximum rate through the channel.