When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    An arbitrary function φ : R n → C is the characteristic function of some random variable if and only if φ is positive definite, continuous at the origin, and if φ(0) = 1. Khinchine’s criterion. A complex-valued, absolutely continuous function φ, with φ(0) = 1, is a characteristic function if and only if it admits the representation

  3. Mallows's Cp - Wikipedia

    en.wikipedia.org/wiki/Mallows's_Cp

    In statistics, Mallows's, [1] [2] named for Colin Lingwood Mallows, is used to assess the fit of a regression model that has been estimated using ordinary least squares.It is applied in the context of model selection, where a number of predictor variables are available for predicting some outcome, and the goal is to find the best model involving a subset of these predictors.

  4. Reduced chi-squared statistic - Wikipedia

    en.wikipedia.org/wiki/Reduced_chi-squared_statistic

    MSWD < 1 if the observed scatter is less than that predicted by the analytical uncertainties. In this case, the data are said to be "underdispersed", indicating that the analytical uncertainties were overestimated. MSWD > 1 if the observed scatter exceeds that predicted by the analytical uncertainties.

  5. Sign test - Wikipedia

    en.wikipedia.org/wiki/Sign_test

    The sign test is a statistical test for consistent differences between pairs of observations, such as the weight of subjects before and after treatment. Given pairs of observations (such as weight pre- and post-treatment) for each subject, the sign test determines if one member of the pair (such as pre-treatment) tends to be greater than (or less than) the other member of the pair (such as ...

  6. Chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_distribution

    These values can be calculated evaluating the quantile function (also known as "inverse CDF" or "ICDF") of the chi-squared distribution; [24] e. g., the χ 2 ICDF for p = 0.05 and df = 7 yields 2.1673 ≈ 2.17 as in the table above, noticing that 1 – p is the p-value from the table.

  7. Bias of an estimator - Wikipedia

    en.wikipedia.org/wiki/Bias_of_an_estimator

    With a little algebra it can be confirmed that it is c = 1/(n + 1) which minimises this combined loss function, rather than c = 1/(n − 1) which minimises just the square of the bias. More generally it is only in restricted classes of problems that there will be an estimator that minimises the MSE independently of the parameter values.

  8. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  9. Scaled inverse chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Scaled_inverse_chi-squared...

    If more is known about the possible values of σ 2, a distribution from the scaled inverse chi-squared family, such as Scale-inv-χ 2 (n 0, s 0 2) can be a convenient form to represent a more informative prior for σ 2, as if from the result of n 0 previous observations (though n 0 need not necessarily be a whole number):