Search results
Results From The WOW.Com Content Network
The largest eigenvalue of is the maximum ... The classical method is to first find the eigenvalues, and then calculate the eigenvectors for each eigenvalue.
Ideally, one should use the Rayleigh quotient in order to get the associated eigenvalue. This algorithm is used to calculate the Google PageRank. The method can also be used to calculate the spectral radius (the eigenvalue with the largest magnitude, for a square matrix) by computing the Rayleigh quotient
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
It calculates a vector e which contains the ... In case of a symmetric matrix it is the absolute value of the quotient of the largest and smallest eigenvalue ...
In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method.Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.
As stated in the introduction, for any vector x, one has (,) [,], where , are respectively the smallest and largest eigenvalues of .This is immediate after observing that the Rayleigh quotient is a weighted average of eigenvalues of M: (,) = = = = where (,) is the -th eigenpair after orthonormalization and = is the th coordinate of x in the eigenbasis.
Rayleigh quotient iteration is an eigenvalue algorithm which extends the idea of the inverse iteration by using the Rayleigh quotient to obtain increasingly accurate eigenvalue estimates. Rayleigh quotient iteration is an iterative method, that is, it delivers a sequence of approximate solutions that converges to a true solution in the limit ...
The spectral norm of a matrix is the largest singular value of , i.e., the square root of the largest eigenvalue of the matrix , where denotes the conjugate transpose of : [5] ‖ ‖ = = (). where () represents the largest singular value of matrix .