Ads
related to: vector algebra previous year questions with answer key english test 4
Search results
Results From The WOW.Com Content Network
Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...
Every algebra over a field is a vector space, but elements of an algebra are generally not called vectors. However, in some cases, they are called vectors, mainly due to historical reasons. Vector quaternion, a quaternion with a zero real part; Multivector or p-vector, an element of the exterior algebra of a vector space.
Topological vector space: a vector space whose M has a compatible topology. Normed vector space: a vector space with a compatible norm. If such a space is complete (as a metric space) then it is called a Banach space. Hilbert space: an inner product space over the real or complex numbers whose inner product gives rise to a Banach space structure.
The operations of vector addition and scalar multiplication of a vector space; The algebraic operations in vector calculus (vector analysis) – including the dot and cross products of 3-dimensional Euclidean space; Algebra over a field – a vector space equipped with a bilinear product; Any of the original vector algebras of the nineteenth ...
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product.Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear".
A four-vector A is a vector with a "timelike" component and three "spacelike" components, and can be written in various equivalent notations: [3] = (,,,) = + + + = + = where A α is the magnitude component and E α is the basis vector component; note that both are necessary to make a vector, and that when A α is seen alone, it refers strictly to the components of the vector.