When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    A residual neural network (also referred to as a residual network or ResNet) [1] is a deep learning architecture in which the layers learn residual functions with reference to the layer inputs. It was developed in 2015 for image recognition , and won the ImageNet Large Scale Visual Recognition Challenge ( ILSVRC ) of that year.

  3. Data structure - Wikipedia

    en.wikipedia.org/wiki/Data_structure

    A data structure known as a hash table.. In computer science, a data structure is a data organization and storage format that is usually chosen for efficient access to data. [1] [2] [3] More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data, [4] i.e., it is an algebraic structure about data.

  4. List of data structures - Wikipedia

    en.wikipedia.org/wiki/List_of_data_structures

    This is a list of well-known data structures. For a wider list of terms, see list of terms relating to algorithms and data structures. For a comparison of running times for a subset of this list see comparison of data structures.

  5. LeNet - Wikipedia

    en.wikipedia.org/wiki/LeNet

    LeNet-5 architecture (overview). LeNet is a series of convolutional neural network structure proposed by LeCun et al. [1] The earliest version, LeNet-1, was trained in 1989.In general, when "LeNet" is referred to without a number, it refers to LeNet-5 (1998), the most well-known version.

  6. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    Aside from their empirical performance, activation functions also have different mathematical properties: Nonlinear When the activation function is non-linear, then a two-layer neural network can be proven to be a universal function approximator. [6]

  7. SqueezeNet - Wikipedia

    en.wikipedia.org/wiki/SqueezeNet

    SqueezeNet was originally described in SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. [1] AlexNet is a deep neural network that has 240 MB of parameters, and SqueezeNet has just 5 MB of parameters.

  8. Inception (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Inception_(deep_learning...

    This was later solved by the ResNet architecture. The architecture consists of three parts stacked on top of one another: [2] The stem (data ingestion): The first few convolutional layers perform data preprocessing to downscale images to a smaller size. The body (data processing): The next many Inception modules perform the bulk of data processing.

  9. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...