Search results
Results From The WOW.Com Content Network
In the decimal number system, completeness is equivalent to the statement that any infinite string of decimal digits is actually a decimal representation for some real number. Depending on the construction of the real numbers used, completeness may take the form of an axiom (the completeness axiom), or may be a theorem proven from the construction.
In statistics, completeness is a property of a statistic computed on a sample dataset in relation to a parametric model of the dataset. It is opposed to the concept of an ancillary statistic . While an ancillary statistic contains no information about the model parameters, a complete statistic contains only information about the parameters, and ...
The least-upper-bound property is one form of the completeness axiom for the real numbers, and is sometimes referred to as Dedekind completeness. [2] It can be used to prove many of the fundamental results of real analysis, such as the intermediate value theorem, the Bolzano–Weierstrass theorem, the extreme value theorem, and the Heine ...
Semantic completeness is the converse of soundness for formal systems. A formal system is complete with respect to tautologousness or "semantically complete" when all its tautologies are theorems, whereas a formal system is "sound" when all theorems are tautologies (that is, they are semantically valid formulas: formulas that are true under every interpretation of the language of the system ...
In statistics, the Lehmann–Scheffé theorem is a prominent statement, tying together the ideas of completeness, sufficiency, uniqueness, and best unbiased estimation. [1] The theorem states that any estimator that is unbiased for a given unknown quantity and that depends on the data only through a complete , sufficient statistic is the unique ...
Completeness: a proof that all true mathematical statements can be proved in the formalism. Consistency: a proof that no contradiction can be obtained in the formalism of mathematics. This consistency proof should preferably use only "finitistic" reasoning about finite mathematical objects.
All completeness properties are described along a similar scheme: one describes a certain class of subsets of a partially ordered set that are required to have a supremum or required to have an infimum. Hence every completeness property has its dual, obtained by inverting the order-dependent definitions in the given statement. Some of the ...
Using the full AC, one can well-order the formulas, and prove the uncountable case with the same argument as the countable one, except with transfinite induction. Other approaches can be used to prove that the completeness theorem in this case is equivalent to the Boolean prime ideal theorem, a weak form of AC.