Ads
related to: material derivative formula examples with solutions math free download- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- Activities & Crafts
Stay creative & active with indoor
& outdoor activities for kids.
- Interactive Stories
Enchant young learners with
animated, educational stories.
- Educational Songs
Explore catchy, kid-friendly tunes
to get your kids excited to learn.
- Printable Workbooks
kutasoftware.com has been visited by 10K+ users in the past month
teacherspayteachers.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
In continuum mechanics, the material derivative [1] [2] describes the time rate of change of some physical quantity (like heat or momentum) of a material element that is subjected to a space-and-time-dependent macroscopic velocity field. The material derivative can serve as a link between Eulerian and Lagrangian descriptions of continuum ...
The Lagrangian and Eulerian specifications of the kinematics and dynamics of the flow field are related by the material derivative (also called the Lagrangian derivative, convective derivative, substantial derivative, or particle derivative). [1] Suppose we have a flow field u, and we are also given a generic field with Eulerian specification F ...
This "special" derivative is in fact the ordinary derivative of a function of many variables along a path following the fluid motion; it may be derived through application of the chain rule in which all independent variables are checked for change along the path (which is to say, the total derivative). For example, the measurement of changes in ...
where D / Dt is the material derivative operator, u is the flow velocity, ρ is the local fluid density, p is the local pressure, τ is the viscous stress tensor and B represents the sum of the external body forces. The first source term on the right hand side represents vortex stretching.
The portion of the material derivative represented by the spatial derivatives is called the convective derivative. It accounts for the variation in fluid property, be it velocity or temperature for example, due to the motion of a fluid particle in space where its values are different.
One example of an optimization problem is: Find the shortest curve between two points on a surface, assuming that the curve must also lie on the surface. If the surface is a plane, then the shortest curve is a line. But if the surface is, for example, egg-shaped, then the shortest path is not immediately clear.
Differential equations play a prominent role in many scientific areas: mathematics, physics, engineering, chemistry, biology, medicine, economics, etc. This list presents differential equations that have received specific names, area by area.
Reynolds transport theorem can be expressed as follows: [1] [2] [3] = + () in which n(x,t) is the outward-pointing unit normal vector, x is a point in the region and is the variable of integration, dV and dA are volume and surface elements at x, and v b (x,t) is the velocity of the area element (not the flow velocity).