When.com Web Search

  1. Ads

    related to: material derivative formula examples with solutions math free download
    • Printable Workbooks

      Download & print 300+ workbooks

      written & reviewed by teachers.

    • Lesson Plans

      Engage your students with our

      detailed lesson plans for K-8.

    • Digital Games

      Turn study time into an adventure

      with fun challenges & characters.

    • Activities & Crafts

      Stay creative & active with indoor

      & outdoor activities for kids.

Search results

  1. Results From The WOW.Com Content Network
  2. Material derivative - Wikipedia

    en.wikipedia.org/wiki/Material_derivative

    In continuum mechanics, the material derivative [1] [2] describes the time rate of change of some physical quantity (like heat or momentum) of a material element that is subjected to a space-and-time-dependent macroscopic velocity field. The material derivative can serve as a link between Eulerian and Lagrangian descriptions of continuum ...

  3. Lagrangian and Eulerian specification of the flow field

    en.wikipedia.org/wiki/Lagrangian_and_Eulerian...

    The Lagrangian and Eulerian specifications of the kinematics and dynamics of the flow field are related by the material derivative (also called the Lagrangian derivative, convective derivative, substantial derivative, or particle derivative). [1] Suppose we have a flow field u, and we are also given a generic field with Eulerian specification F ...

  4. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    This "special" derivative is in fact the ordinary derivative of a function of many variables along a path following the fluid motion; it may be derived through application of the chain rule in which all independent variables are checked for change along the path (which is to say, the total derivative). For example, the measurement of changes in ...

  5. Vorticity equation - Wikipedia

    en.wikipedia.org/wiki/Vorticity_equation

    where ⁠ D / Dt ⁠ is the material derivative operator, u is the flow velocity, ρ is the local fluid density, p is the local pressure, τ is the viscous stress tensor and B represents the sum of the external body forces. The first source term on the right hand side represents vortex stretching.

  6. Fluid kinematics - Wikipedia

    en.wikipedia.org/wiki/Fluid_kinematics

    The portion of the material derivative represented by the spatial derivatives is called the convective derivative. It accounts for the variation in fluid property, be it velocity or temperature for example, due to the motion of a fluid particle in space where its values are different.

  7. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    One example of an optimization problem is: Find the shortest curve between two points on a surface, assuming that the curve must also lie on the surface. If the surface is a plane, then the shortest curve is a line. But if the surface is, for example, egg-shaped, then the shortest path is not immediately clear.

  8. List of named differential equations - Wikipedia

    en.wikipedia.org/wiki/List_of_named_differential...

    Differential equations play a prominent role in many scientific areas: mathematics, physics, engineering, chemistry, biology, medicine, economics, etc. This list presents differential equations that have received specific names, area by area.

  9. Reynolds transport theorem - Wikipedia

    en.wikipedia.org/wiki/Reynolds_transport_theorem

    Reynolds transport theorem can be expressed as follows: [1] [2] [3] = + () in which n(x,t) is the outward-pointing unit normal vector, x is a point in the region and is the variable of integration, dV and dA are volume and surface elements at x, and v b (x,t) is the velocity of the area element (not the flow velocity).