Search results
Results From The WOW.Com Content Network
This is called a trivial bundle. Examples of non-trivial fiber bundles include the Möbius strip and Klein bottle, as well as nontrivial covering spaces. Fiber bundles, such as the tangent bundle of a manifold and other more general vector bundles, play an important role in differential geometry and differential topology, as do principal bundles.
In differential topology, the Hopf fibration (also known as the Hopf bundle or Hopf map) describes a 3-sphere (a hypersphere in four-dimensional space) in terms of circles and an ordinary sphere. Discovered by Heinz Hopf in 1931, it is an influential early example of a fiber bundle.
In mathematical physics, covariant classical field theory represents classical fields by sections of fiber bundles, and their dynamics is phrased in the context of a finite-dimensional space of fields. Nowadays, it is well known that [citation needed] jet bundles and the variational bicomplex are the correct
A mapping : between total spaces of two fibrations : and : with the same base space is a fibration homomorphism if the following diagram commutes: . The mapping is a fiber homotopy equivalence if in addition a fibration homomorphism : exists, such that the mappings and are homotopic, by fibration homomorphisms, to the identities and . [2]: 405-406
The Möbius strip can be constructed by a non-trivial gluing of two trivial bundles on open subsets U and V of the circle S 1.When glued trivially (with g UV =1) one obtains the trivial bundle, but with the non-trivial gluing of g UV =1 on one overlap and g UV =-1 on the second overlap, one obtains the non-trivial bundle E, the Möbius strip.
At each point in the fiber , the vertical fiber is unique. It is the tangent space to the fiber. The horizontal fiber is non-unique. It merely has to be transverse to the vertical fiber. In mathematics, the vertical bundle and the horizontal bundle are vector bundles associated to a smooth fiber bundle.
The orthonormal frame bundle () of the Möbius strip is a non-trivial principal /-bundle over the circle. In mathematics , a frame bundle is a principal fiber bundle F ( E ) {\displaystyle F(E)} associated with any vector bundle E {\displaystyle E} .
In this setting, the base space is a smooth manifold, and is assumed to be a smooth fiber bundle over (i.e., is a smooth manifold and : is a smooth map). In this case, one considers the space of smooth sections of E {\displaystyle E} over an open set U {\displaystyle U} , denoted C ∞ ( U , E ) {\displaystyle C^{\infty }(U,E)} .