Search results
Results From The WOW.Com Content Network
Condition numbers can also be defined for nonlinear functions, and can be computed using calculus.The condition number varies with the point; in some cases one can use the maximum (or supremum) condition number over the domain of the function or domain of the question as an overall condition number, while in other cases the condition number at a particular point is of more interest.
In linear algebra and numerical analysis, a preconditioner of a matrix is a matrix such that has a smaller condition number than . It is also common to call T = P − 1 {\\displaystyle T=P^{-1}} the preconditioner, rather than P {\\displaystyle P} , since P {\\displaystyle P} itself is rarely explicitly available.
Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-semidefinite.
In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the ...
The standard convergence condition (for any iterative method) is when the spectral radius of the iteration matrix is less than 1: ρ ( D − 1 ( L + U ) ) < 1. {\displaystyle \rho (D^{-1}(L+U))<1.} A sufficient (but not necessary) condition for the method to converge is that the matrix A is strictly or irreducibly diagonally dominant .
Consider the system of equations x + y + 2z = 3, x + y + z = 1, 2x + 2y + 2z = 2.. The coefficient matrix is = [], and the augmented matrix is (|) = [].Since both of these have the same rank, namely 2, there exists at least one solution; and since their rank is less than the number of unknowns, the latter being 3, there are infinitely many solutions.
In mathematics, in the field of control theory, a Sylvester equation is a matrix equation of the form: [1] A X + X B = C . {\displaystyle AX+XB=C.} It is named after English mathematician James Joseph Sylvester .
For many problems in applied linear algebra, it is useful to adopt the perspective of a matrix as being a concatenation of column vectors. For example, when solving the linear system =, rather than understanding x as the product of with b, it is helpful to think of x as the vector of coefficients in the linear expansion of b in the basis formed by the columns of A.