Ad
related to: fault detection techniques in machine learning examples pdf free
Search results
Results From The WOW.Com Content Network
Fault detection, isolation, and recovery (FDIR) is a subfield of control engineering which concerns itself with monitoring a system, identifying when a fault has occurred, and pinpointing the type of fault and its location. Two approaches can be distinguished: A direct pattern recognition of sensor readings that indicate a fault and an analysis ...
graph with an example of steps in a failure mode and effects analysis. Failure mode and effects analysis (FMEA; often written with "failure modes" in plural) is the process of reviewing as many components, assemblies, and subsystems as possible to identify potential failure modes in a system and their causes and effects.
Supervised anomaly detection techniques require a data set that has been labeled as "normal" and "abnormal" and involves training a classifier. However, this approach is rarely used in anomaly detection due to the general unavailability of labelled data and the inherent unbalanced nature of the classes.
All error-detection and correction schemes add some redundancy (i.e., some extra data) to a message, which receivers can use to check consistency of the delivered message and to recover data that has been determined to be corrupted.
ATPG (acronym for both automatic test pattern generation and automatic test pattern generator) is an electronic design automation method or technology used to find an input (or test) sequence that, when applied to a digital circuit, enables automatic test equipment to distinguish between the correct circuit behavior and the faulty circuit behavior caused by defects.
Failure analysis is the process of collecting and analyzing data to determine the cause of a failure, often with the goal of determining corrective actions or liability.. According to Bloch and Geitner, ”machinery failures reveal a reaction chain of cause and effect… usually a deficiency commonly referred to as the symptom…”
Archived (PDF) from the original on 11 June 2007 — Bitfilters; Warren, Henry S. Jr. "Cyclic Redundancy Check" (PDF). Hacker's Delight. Archived from the original (PDF) on 3 May 2015. — theory, practice, hardware, and software with emphasis on CRC-32. Reverse-Engineering a CRC Algorithm Archived 7 August 2011 at the Wayback Machine
In effort to meet this goal, researchers have turned to ideas from the machine learning field. This is a natural source of ideas, since the machine learning task can be described as turning background knowledge and examples (input) into knowledge (output). If data mining results in discovering meaningful patterns, data turns into information.