When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Moment (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Moment_(mathematics)

    The fourth central moment is a measure of the heaviness of the tail of the distribution. Since it is the expectation of a fourth power, the fourth central moment, where defined, is always nonnegative; and except for a point distribution, it is always strictly positive. The fourth central moment of a normal distribution is 3σ 4.

  3. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The simplest case of a normal distribution is known as the standard normal distribution or unit normal distribution. This is a special case when μ = 0 {\textstyle \mu =0} and σ 2 = 1 {\textstyle \sigma ^{2}=1} , and it is described by this probability density function (or density): φ ( z ) = e − z 2 2 2 π . {\displaystyle \varphi (z ...

  4. Cokurtosis - Wikipedia

    en.wikipedia.org/wiki/Cokurtosis

    Therefore, all of the cokurtosis terms of this distribution with this nonlinear correlation are smaller than what would have been expected from a bivariate normal distribution with ρ=0.818. Note that although X and Y are individually standard normally distributed, the distribution of the sum X+Y is platykurtic. The standard deviation of the sum is

  5. Kurtosis - Wikipedia

    en.wikipedia.org/wiki/Kurtosis

    The most prominent example of a mesokurtic distribution is the normal distribution family, regardless of the values of its parameters. A few other well-known distributions can be mesokurtic, depending on parameter values: for example, the binomial distribution is mesokurtic for p = 1 / 2 ± 1 / 12 {\textstyle p=1/2\pm {\sqrt {1/12}}} .

  6. Standardized moment - Wikipedia

    en.wikipedia.org/wiki/Standardized_moment

    Let X be a random variable with a probability distribution P and mean value = [] (i.e. the first raw moment or moment about zero), the operator E denoting the expected value of X. Then the standardized moment of degree k is μ k σ k , {\displaystyle {\frac {\mu _{k}}{\sigma ^{k}}},} [ 2 ] that is, the ratio of the k th moment about the mean

  7. Method of moments (statistics) - Wikipedia

    en.wikipedia.org/wiki/Method_of_moments_(statistics)

    In statistics, the method of moments is a method of estimation of population parameters.The same principle is used to derive higher moments like skewness and kurtosis. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest.

  8. Higher-order statistics - Wikipedia

    en.wikipedia.org/wiki/Higher-order_statistics

    HOS are particularly used in the estimation of shape parameters, such as skewness and kurtosis, as when measuring the deviation of a distribution from the normal distribution. In statistical theory , one long-established approach to higher-order statistics, for univariate and multivariate distributions is through the use of cumulants and joint ...

  9. Shape parameter - Wikipedia

    en.wikipedia.org/wiki/Shape_parameter

    Most simply, they can be estimated in terms of the higher moments, using the method of moments, as in the skewness (3rd moment) or kurtosis (4th moment), if the higher moments are defined and finite. Estimators of shape often involve higher-order statistics (non-linear functions of the data), as in the higher moments, but linear estimators also ...