When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Compatibility (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Compatibility_(mechanics)

    The problem of compatibility in continuum mechanics involves the determination of allowable single-valued continuous fields on simply connected bodies. More precisely, the problem may be stated in the following manner. [5] Figure 1. Motion of a continuum body. Consider the deformation of a body shown in Figure 1.

  3. Analytical mechanics - Wikipedia

    en.wikipedia.org/wiki/Analytical_mechanics

    The two-body problem is solved by formulas involving parameters; their values can be changed to study the class of all solutions, that is, the mathematical structure of the problem. Moreover, an accurate mental or drawn picture can be made for the motion of two bodies, and it can be as real and accurate as the real bodies moving and interacting.

  4. Finite volume method for two dimensional diffusion problem

    en.wikipedia.org/wiki/Finite_volume_method_for...

    A portion of the two dimensional grid used for Discretization is shown below: Graph of 2 dimensional plot. In addition to the east (E) and west (W) neighbors, a general grid node P, now also has north (N) and south (S) neighbors. The same notation is used here for all faces and cell dimensions as in one dimensional analysis.

  5. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    [4] [5] [6] A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined.

  6. Stokes problem - Wikipedia

    en.wikipedia.org/wiki/Stokes_problem

    This is considered one of the simplest unsteady problems that has an exact solution for the Navier–Stokes equations. [ 1 ] [ 2 ] In turbulent flow, this is still named a Stokes boundary layer, but now one has to rely on experiments , numerical simulations or approximate methods in order to obtain useful information on the flow.

  7. Cognate linkage - Wikipedia

    en.wikipedia.org/wiki/Cognate_linkage

    In kinematics, cognate linkages are linkages that ensure the same coupler curve geometry or input-output relationship, while being dimensionally dissimilar. In case of four-bar linkage coupler cognates, the Roberts–Chebyshev Theorem , after Samuel Roberts and Pafnuty Chebyshev , [ 1 ] states that each coupler curve can be generated by three ...

  8. Lattice Boltzmann methods - Wikipedia

    en.wikipedia.org/wiki/Lattice_Boltzmann_methods

    Schematic of D2Q9 lattice vectors for 2D Lattice Boltzmann. Unlike CFD methods that solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice.

  9. Burmester's theory - Wikipedia

    en.wikipedia.org/wiki/Burmester's_theory

    Two positions: As an example consider a task defined by two positions of the coupler link, as shown in the figure. Choose two points A and B in the body, so its two positions define the segments A 1 B 1 and A 2 B 2. It is easy to see that A is a circling point with a center that is on the perpendicular bisector of the segment A 1 A 2.