Search results
Results From The WOW.Com Content Network
To create the solution, 11.6 g NaCl is placed in a volumetric flask, dissolved in some water, then followed by the addition of more water until the total volume reaches 100 mL. The density of water is approximately 1000 g/L and its molar mass is 18.02 g/mol (or 1/18.02 = 0.055 mol/g). Therefore, the molar concentration of water is
The term molality is formed in analogy to molarity which is the molar concentration of a solution. The earliest known use of the intensive property molality and of its adjectival unit, the now-deprecated molal, appears to have been published by G. N. Lewis and M. Randall in the 1923 publication of Thermodynamics and the Free Energies of Chemical Substances. [3]
In water solutions containing relatively small quantities of dissolved solute (as in biology), such figures may be "percentivized" by multiplying by 100 a ratio of grams solute per mL solution. The result is given as "mass/volume percentage". Such a convention expresses mass concentration of 1 gram of solute in 100 mL of solution, as "1 m/v %".
If one adds 1 litre of water to this solution, the salt concentration is reduced. The diluted solution still contains 10 grams of salt (0.171 moles of NaCl). Mathematically this relationship can be shown by equation: = where c 1 = initial concentration or molarity; V 1 = initial volume
In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: mass concentration, molar concentration, number concentration, and volume concentration. [1]
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
Here, 1 / f eq can have a fractional (non-integer) value. In precipitation reactions, the equivalence factor measures the number of ions which will precipitate in a given reaction. Here, 1 / f eq is an integer value. Normal concentration of an ionic solution is also related to conductivity (electrolytic) through the use of ...
Molar masses typically vary between: 1–238 g/mol for atoms of naturally occurring elements; 10–1000 g/mol for simple chemical compounds; 1000–5 000 000 g/mol for polymers, proteins, DNA fragments, etc. While molar masses are almost always, in practice, calculated from atomic weights, they can also be measured in certain cases.