Ad
related to: zeolite molecular sieve applications and uses in chemistry experiment research
Search results
Results From The WOW.Com Content Network
3A molecular sieves are used to dry a range of materials, such as ethanol, air, refrigerants, natural gas and unsaturated hydrocarbons. The latter include cracking gas, acetylene, ethylene, propylene and butadiene. 3A molecular sieves are stored at room temperature, with a relative humidity not more than 90%. They are sealed under reduced ...
Pentasil-zeolites are defined by their structure type, and more specifically by their X-ray diffraction patterns. ZSM -5 is the trade name of a pentasil-zeolite. As early as 1967, Argauer and Landolt worked out parameters for the synthesis of pentasilzeolites, particularly those relating to the following molar ratios: OH − /SiO 2 = 0.07–10, SiO 2 /Al 2 O 3 = 5–100, H 2 O/SiO 2 = 1–240. [1]
[23] [24] In chemistry, zeolites are used as membranes to separate molecules (only molecules of certain sizes and shapes can pass through), and as traps for molecules so they can be analyzed. Research into and development of the many biochemical and biomedical applications of zeolites, particularly the naturally occurring species heulandite ...
Size-exclusion chromatography, also known as molecular sieve chromatography, [1] is a chromatographic method in which molecules in solution are separated by their shape, and in some cases size. [2] It is usually applied to large molecules or macromolecular complexes such as proteins and industrial polymers . [ 3 ]
It operates at near-ambient temperature and significantly differs from the cryogenic distillation commonly used to separate gases. Selective adsorbent materials (e.g., zeolites, (aka molecular sieves), activated carbon, etc.) are used as trapping material, preferentially adsorbing the target gas species at high pressure. The process then swings ...
Clinoptilolite has many applications due to its effect as a molecular sieve, among others as an additive for building materials, as aggregate in horticulture, as an additive to cattle feed, as an additive in household products, as a desiccant, and in environmental technology.
In 1956 Flanigen began working on molecular sieves. [4] Molecular sieves are crystal compounds with molecular sized pores that can filter or separate very complex substances. Edith Flanigen is best known as the inventor of zeolite Y, a specific molecular sieve. Zeolite Y was a certain type of molecular sieve that could refine petroleum. Zeolite ...
SSZ-13 is a high-silica zeolite with the CHA topology. Materials with this topology are of industrial interest, as potential catalysts for application in the methanol to olefins (MTO) reaction. Recently SSZ-13 has attracted attention as the catalyst for selective catalytic reduction (SCR) of NOx. [8]