When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    Acceleration is the rate of change of velocity. At any point on a trajectory, the magnitude of the acceleration is given by the rate of change of velocity in both magnitude and direction at that point. The true acceleration at time t is found in the limit as time interval Δt → 0 of Δv/Δt.

  3. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  4. Orders of magnitude (acceleration) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude...

    Acceleration of Earth toward the sun due to sun's gravitational attraction 10 −1: 1 dm/s 2: lab 0.25 m/s 2: 0.026 g: Train acceleration for SJ X2 [citation needed] 10 0: 1 m/s 2: inertial 1.62 m/s 2: 0.1654 g: Standing on the Moon at its equator [citation needed] lab 4.3 m/s 2: 0.44 g: Car acceleration 0–100 km/h in 6.4 s with a Saab 9-5 ...

  5. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    This example neglects the effects of tire sliding, suspension dipping, real deflection of all ideally rigid mechanisms, etc. Another example of significant jerk, analogous to the first example, is the cutting of a rope with a particle on its end. Assume the particle is oscillating in a circular path with non-zero centripetal acceleration.

  6. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    For a body moving in a circle of radius at a constant speed , its acceleration has a magnitude = and is directed toward the center of the circle. [ note 9 ] The force required to sustain this acceleration, called the centripetal force , is therefore also directed toward the center of the circle and has magnitude m v 2 / r {\displaystyle mv^{2}/r} .

  7. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    Acceleration is the second derivative of displacement i.e. acceleration can be found by differentiating position with respect to time twice or differentiating velocity with respect to time once. [10] The SI unit of acceleration is m ⋅ s − 2 {\displaystyle \mathrm {m\cdot s^{-2}} } or metre per second squared .

  8. Atwood machine - Wikipedia

    en.wikipedia.org/wiki/Atwood_machine

    An equation for the acceleration can be derived by analyzing forces. Assuming a massless, inextensible string and an ideal massless pulley, the only forces to consider are: tension force (T), and the weight of the two masses (W 1 and W 2). To find an acceleration, consider the forces affecting each individual mass.

  9. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    The general formula for the escape velocity of an object at a distance r from the center of a planet with mass M is [12] = =, where G is the gravitational constant and g is the gravitational acceleration. The escape velocity from Earth's surface is about 11 200 m/s, and is irrespective of the direction of the object.