When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    Moreover, if one sets x = 1 + t, one gets without computation that () = (+) is a polynomial in t with the same first coefficient 3 and constant term 1. [2] The rational root theorem implies thus that a rational root of Q must belong to {,}, and thus that the rational roots of P satisfy = + {,,,}.

  3. Square root of 2 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_2

    The square root of 2 (approximately 1.4142) is the positive real number that, when multiplied by itself or squared, ... The rational root theorem ...

  4. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    Rational root theorem – Relationship between the rational roots of a polynomial and its extreme coefficients; Geometrical properties of polynomial roots – Geometry of the location of polynomial roots; Gauss–Lucas theorem – Geometric relation between the roots of a polynomial and those of its derivative

  5. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    If =, then it says a rational root of a monic polynomial over integers is an integer (cf. the rational root theorem). To see the statement, let a / b {\displaystyle a/b} be a root of f {\displaystyle f} in F {\displaystyle F} and assume a , b {\displaystyle a,b} are relatively prime .

  6. Monic polynomial - Wikipedia

    en.wikipedia.org/wiki/Monic_polynomial

    An element a of F is integral over R if it is a root of a monic polynomial with coefficients in R. A complex number that is integral over the integers is called an algebraic integer. This terminology is motivated by the fact that the integers are exactly the rational numbers that are also algebraic integers.

  7. Gelfond–Schneider constant - Wikipedia

    en.wikipedia.org/wiki/Gelfond–Schneider_constant

    The square root of the Gelfond–Schneider constant is the transcendental number = 1.632 526 919 438 152 844 77.... This same constant can be used to prove that "an irrational elevated to an irrational power may be rational", even without first proving its transcendence.

  8. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Vieta's formulas relate the polynomial coefficients to signed sums of products of the roots r 1, r 2, ... Properties of polynomial roots; Rational root theorem;

  9. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    Sometimes one or more roots of a polynomial are known, perhaps having been found using the rational root theorem. If one root r of a polynomial P(x) of degree n is known then polynomial long division can be used to factor P(x) into the form (x − r)Q(x) where Q(x) is a polynomial of degree n − 1.