Ads
related to: geometry triangle inequalities
Search results
Results From The WOW.Com Content Network
In Euclidean geometry, for right triangles the triangle inequality is a consequence of the Pythagorean theorem, and for general triangles, a consequence of the law of cosines, although it may be proved without these theorems.
The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);
Euler's inequality, in the form stating that, for all triangles inscribed in a given circle, the maximum of the radius of the inscribed circle is reached for the equilateral triangle and only for it, is valid in absolute geometry. [7]
Rewriting the inequality above allows for a more concrete geometric interpretation, which in turn provides an immediate proof. [1]+ +. Now the summands on the left side are the areas of equilateral triangles erected over the sides of the original triangle and hence the inequation states that the sum of areas of the equilateral triangles is always greater than or equal to threefold the area of ...
Erdős–Mordell inequality; Euler's theorem in geometry; Gromov's inequality for complex projective space; Gromov's systolic inequality for essential manifolds; Hadamard's inequality; Hadwiger–Finsler inequality; Hinge theorem; Hitchin–Thorpe inequality; Isoperimetric inequality; Jordan's inequality; Jung's theorem; Loewner's torus ...
Pages in category "Triangle inequalities" The following 8 pages are in this category, out of 8 total. ... Erdős–Mordell inequality; Euler's theorem in geometry; H.