Search results
Results From The WOW.Com Content Network
In a distribution, full width at half maximum (FWHM) is the difference between the two values of the independent variable at which the dependent variable is equal to half of its maximum value. In other words, it is the width of a spectrum curve measured between those points on the y -axis which are half the maximum amplitude.
When these assumptions are satisfied, the following covariance matrix K applies for the 1D profile parameters , , and under i.i.d. Gaussian noise and under Poisson noise: [9] = , = , where is the width of the pixels used to sample the function, is the quantum efficiency of the detector, and indicates the standard deviation of the measurement noise.
The half maximum of the central Airy disk (where () / = /) occurs at = …; the 1/e 2 point (where () / = /) occurs at = …, and the maximum of the first ring occurs at = …. The intensity I 0 {\displaystyle I_{0}} at the center of the diffraction pattern is related to the total power P 0 {\displaystyle P_{0}} incident on the aperture by [ 12 ]
If the maximum gain is 0 dB, the 3 dB bandwidth is the frequency range where attenuation is less than 3 dB. 3 dB attenuation is also where power is half its maximum. This same half-power gain convention is also used in spectral width, and more generally for the extent of functions as full width at half maximum (FWHM).
Plot of the centered Voigt profile for four cases. Each case has a full width at half-maximum of very nearly 3.6. The black and red profiles are the limiting cases of the Gaussian (γ =0) and the Lorentzian (σ =0) profiles respectively.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In the peak width definition, the value of ΔM is the width of the peak measured at a specified fraction of the peak height, for example 0.5%, 5%, 10% or 50%. The latter is called the full width at half maximum (FWHM).
In fiber-optic communication applications, the usual method of specifying spectral width is the full width at half maximum (FWHM). This is the same convention used in bandwidth, defined as the frequency range where power drops by less than half (at most −3 dB). The FWHM method may be difficult to apply when the spectrum has a complex shape.