Search results
Results From The WOW.Com Content Network
A bit array (also known as bitmask, [1] bit map, bit set, bit string, or bit vector) is an array data structure that compactly stores bits. It can be used to implement a simple set data structure. A bit array is effective at exploiting bit-level parallelism in hardware to perform operations quickly.
However, C and C++ will use a linear indexing formula for multi-dimensional arrays that are declared with compile time constant size, e.g. by int A [10][20] or int A [m][n], instead of the traditional int ** A. [8] The C99 standard introduced Variable Length Array types that let define array types with dimensions computed in run time.
The d-ary heap consists of an array of n items, each of which has a priority associated with it. These items may be viewed as the nodes in a complete d-ary tree, listed in breadth first traversal order: the item at position 0 of the array (using zero-based numbering) forms the root of the tree, the items at positions 1 through d are its children, the next d 2 items are its grandchildren, etc.
The number 0, the strings "0" and "", the empty list (), and the special value undef evaluate to false. [8] All else evaluates to true. Lua has a Boolean data type, but non-Boolean values can also behave as Booleans. The non-value nil evaluates to false, whereas every other data type value evaluates to true.
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
The term "array" may also refer to an array data type, a kind of data type provided by most high-level programming languages that consists of a collection of values or variables that can be selected by one or more indices computed at run-time. Array types are often implemented by array structures; however, in some languages they may be ...
Structure of arrays (SoA) is a layout separating elements of a record (or 'struct' in the C programming language) into one parallel array per field. [1] The motivation is easier manipulation with packed SIMD instructions in most instruction set architectures, since a single SIMD register can load homogeneous data, possibly transferred by a wide internal datapath (e.g. 128-bit).
Programming languages or their standard libraries that support multi-dimensional arrays typically have a native row-major or column-major storage order for these arrays. Row-major order is used in C/C++/Objective-C (for C-style arrays), PL/I, [4] Pascal, [5] Speakeasy, [citation needed] and SAS. [6]