Search results
Results From The WOW.Com Content Network
The midpoint theorem generalizes to the intercept theorem, where rather than using midpoints, both sides are partitioned in the same ratio. [1] [2] The converse of the theorem is true as well. That is if a line is drawn through the midpoint of triangle side parallel to another triangle side then the line will bisect the third side of the triangle.
One implication holds by the invariance of the integral by diffeomorphisms: = = =. For the converse, we apply Moser's trick to the family of volume forms := +.Since () =, the de Rham cohomology class [] vanishes, as a consequence of Poincaré duality and the de Rham theorem.
Simson lines (in red) are tangents to the Steiner deltoid (in blue).. The Simson line of a vertex of the triangle is the altitude of the triangle dropped from that vertex, and the Simson line of the point diametrically opposite to the vertex is the side of the triangle opposite to that vertex.
In the mathematical theory of automorphic forms, a converse theorem gives sufficient conditions for a Dirichlet series to be the Mellin transform of a modular form. More generally a converse theorem states that a representation of an algebraic group over the adeles is automorphic whenever the L-functions of various twists of it are well-behaved.
For example, the four-vertex theorem was proved in 1912, but its converse was proved only in 1997. [3] In practice, when determining the converse of a mathematical theorem, aspects of the antecedent may be taken as establishing context. That is, the converse of "Given P, if Q then R" will be "Given P, if R then Q".
The converse of the triangle inequality theorem is also true: if three real numbers are such that each is less than the sum of the others, then there exists a triangle with these numbers as its side lengths and with positive area; and if one number equals the sum of the other two, there exists a degenerate triangle (that is, with zero area ...
The intercept theorem, also known as Thales's theorem, basic proportionality theorem or side splitter theorem, is an important theorem in elementary geometry about the ratios of various line segments that are created if two rays with a common starting point are intercepted by a pair of parallels.
Due to the Pythagorean theorem the number () has the simple geometric meanings shown in the diagram: For a point outside the circle () is the squared tangential distance | | of point to the circle . Points with equal power, isolines of Π ( P ) {\displaystyle \Pi (P)} , are circles concentric to circle c {\displaystyle c} .