When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  3. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    Acceleration is the rate of change of velocity. At any point on a trajectory, the magnitude of the acceleration is given by the rate of change of velocity in both magnitude and direction at that point. The true acceleration at time t is found in the limit as time interval Δt → 0 of Δv/Δt.

  4. Orders of magnitude (acceleration) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude...

    Acceleration of Earth toward the sun due to sun's gravitational attraction 10 −1: 1 dm/s 2: lab 0.25 m/s 2: 0.026 g: Train acceleration for SJ X2 [citation needed] 10 0: 1 m/s 2: inertial 1.62 m/s 2: 0.1654 g: Standing on the Moon at its equator [citation needed] lab 4.3 m/s 2: 0.44 g: Car acceleration 0–100 km/h in 6.4 s with a Saab 9-5 ...

  5. Atwood machine - Wikipedia

    en.wikipedia.org/wiki/Atwood_machine

    An equation for the acceleration can be derived by analyzing forces. Assuming a massless, inextensible string and an ideal massless pulley, the only forces to consider are: tension force (T), and the weight of the two masses (W 1 and W 2). To find an acceleration, consider the forces affecting each individual mass.

  6. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    This example neglects the effects of tire sliding, suspension dipping, real deflection of all ideally rigid mechanisms, etc. Another example of significant jerk, analogous to the first example, is the cutting of a rope with a particle on its end. Assume the particle is oscillating in a circular path with non-zero centripetal acceleration.

  7. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    The formula for the acceleration A P can now be obtained as: = ˙ + + (), or = / + / +, where α is the angular acceleration vector obtained from the derivative of the angular velocity vector; / =, is the relative position vector (the position of P relative to the origin O of the moving frame M); and = ¨ is the acceleration of the origin of ...

  8. Scale analysis (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Scale_analysis_(mathematics)

    Scale analysis (or order-of-magnitude analysis) is a powerful tool used in the mathematical sciences for the simplification of equations with many terms. First the approximate magnitude of individual terms in the equations is determined. Then some negligibly small terms may be ignored.

  9. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    Acceleration is the second derivative of displacement i.e. acceleration can be found by differentiating position with respect to time twice or differentiating velocity with respect to time once. [10] The SI unit of acceleration is m ⋅ s − 2 {\displaystyle \mathrm {m\cdot s^{-2}} } or metre per second squared .