Search results
Results From The WOW.Com Content Network
The quadratic formula =. is a closed form of the solutions to the general quadratic equation + + =. More generally, in the context of polynomial equations, a closed form of a solution is a solution in radicals; that is, a closed-form expression for which the allowed functions are only n th-roots and field operations (+,,, /).
Closed-form expression, a finitary expression Closed differential form , a differential form α {\displaystyle \alpha } whose exterior derivative d α {\displaystyle d\alpha } is the zero form 0 {\displaystyle 0} , meaning d α = 0 {\displaystyle d\alpha =0} .
In mathematics, especially vector calculus and differential topology, a closed form is a differential form α whose exterior derivative is zero (dα = 0), and an exact form is a differential form, α, that is the exterior derivative of another differential form β. Thus, an exact form is in the image of d, and a closed form is in the kernel of d.
Unlike the two-body problem, the three-body problem has no general closed-form solution, meaning there is no equation that always solves it. [1] When three bodies orbit each other, the resulting dynamical system is chaotic for most initial conditions.
Any generic method or algorithm for solving quadratic equations can be applied to an equation with symbolic coefficients and used to derive some closed-form expression equivalent to the quadratic formula. Alternative methods are sometimes simpler than completing the square, and may offer interesting insight into other areas of mathematics.
In mathematical logic, a sentence (or closed formula) [1] of a predicate logic is a Boolean-valued well-formed formula with no free variables. A sentence can be viewed as expressing a proposition , something that must be true or false.
The field F is algebraically closed if and only if every rational function in one variable x, with coefficients in F, can be written as the sum of a polynomial function with rational functions of the form a/(x − b) n, where n is a natural number, and a and b are elements of F.
Conversely, if closed sets are given and every intersection of closed sets is closed, then one can define a closure operator C such that () is the intersection of the closed sets containing X. This equivalence remains true for partially ordered sets with the greatest-lower-bound property , if one replace "closed sets" by "closed elements" and ...