Search results
Results From The WOW.Com Content Network
The inverse Gaussian distribution is a two-parameter exponential family with natural parameters −λ/(2μ 2) and −λ/2, and natural statistics X and 1/X.. For > fixed, it is also a single-parameter natural exponential family distribution [4] where the base distribution has density
The inverse Gaussian and gamma distributions are special cases of the generalized inverse Gaussian distribution for p = −1/2 and b = 0, respectively. [7] Specifically, an inverse Gaussian distribution of the form
The probability density, cumulative distribution, and inverse cumulative distribution functions of a generalized chi-squared variable do not have simple closed-form expressions. But there exist several methods to compute them numerically: Ruben's method, [ 7 ] Imhof's method, [ 8 ] IFFT method, [ 6 ] ray method, [ 6 ] and ellipse approximation.
Download QR code; Print/export ... and it is restricted to this domain in many computer algebra systems. ... Cumulative distribution function
The cumulative distribution function of the reciprocal, within the same range, is G ( y ) = b − y − 1 b − a . {\displaystyle G(y)={\frac {b-y^{-1}}{b-a}}.} For example, if X is uniformly distributed on the interval (0,1), then Y = 1 / X has density g ( y ) = y − 2 {\displaystyle g(y)=y^{-2}} and cumulative distribution function G ( y ...
Alternatively using a scaled precision (inverse of the variance) parametrization (to avoid issues if is near zero), obtained by setting =, the probability density function is given by f Y ( y ; θ ) = 2 θ π exp ( − y 2 θ 2 π ) y ≥ 0 , {\displaystyle f_{Y}(y;\theta )={\frac {2\theta }{\pi }}\exp \left(-{\frac {y^{2}\theta ^{2}}{\pi ...
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
The class of normal-inverse Gaussian distributions is closed under convolution in the following sense: [9] if and are independent random variables that are NIG-distributed with the same values of the parameters and , but possibly different values of the location and scale parameters, , and ,, respectively, then + is NIG-distributed with parameters ,, + and +.