Search results
Results From The WOW.Com Content Network
Schematic diagram of a Michelson interferometer, configured for FTIR. In a Michelson interferometer adapted for FTIR, light from the polychromatic infrared source, approximately a black-body radiator, is collimated and directed to a beam splitter. Ideally 50% of the light is refracted towards the fixed mirror and 50% is transmitted towards the ...
FTIR mode Sample preparation Schematic diagram Transmission FTIR: Transmission mode is the most widely used FTIR technique in geoscience due to its high analysis speed and cost-efficient characteristics. [4] The sample, either a rock or a mineral, is cut into a block and polished on both sides until a thin (typically 300 to 15 μm) wafer is ...
The Michelson spectrograph is similar to the instrument used in the Michelson–Morley experiment. Light from the source is split into two beams by a half-silvered mirror, one is reflected off a fixed mirror and one off a movable mirror, which introduces a time delay—the Fourier-transform spectrometer is just a Michelson interferometer with a ...
A common laboratory instrument that uses this technique is a Fourier transform infrared (FTIR) spectrometer. Two-dimensional IR is also possible as discussed below. The infrared portion of the electromagnetic spectrum is usually divided into three regions; the near-, mid- and far-infrared, named for their relation to the visible spectrum.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
The schematic representation of a nano-FTIR system with a broadband infrared source. Nano-FTIR (nanoscale Fourier transform infrared spectroscopy) is a scanning probe technique that utilizes as a combination of two techniques: Fourier transform infrared spectroscopy (FTIR) and scattering-type scanning near-field optical microscopy (s-SNOM).
Figure 8 shows the experimental setup used in NSOM/FTIR in the external reflection mode. FEL source is focused on the sample from the far-field using a mirror. The distance between the probe and a sample is kept at a few nanometers during scanning. Figure 8: General NSOM/FTIR setup. Figure 9 is the cross-section of a NSOM/FTIR instrument.
Components of a typical THz-TDS instrument, as illustrated in the figure, include an infrared laser, optical beamsplitters, beam steering mirrors, delay stages, a terahertz generator, terahertz beam focusing and collimating optics like parabolic mirrors, and detector. A typical THz time domain spectroscopy (THz-TDS) system.