Search results
Results From The WOW.Com Content Network
The hash join is an example of a join algorithm and is used in the implementation of a relational database management system.All variants of hash join algorithms involve building hash tables from the tuples of one or both of the joined relations, and subsequently probing those tables so that only tuples with the same hash code need to be compared for equality in equijoins.
For example, one variant of the block nested loop join reads an entire page of tuples into memory and loads them into a hash table. It then scans S {\displaystyle S} , and probes the hash table to find S {\displaystyle S} tuples that match any of the tuples in the current page of R {\displaystyle R} .
A hash table uses a hash function to compute an index, also called a hash code, into an array of buckets or slots, from which the desired value can be found. During lookup, the key is hashed and the resulting hash indicates where the corresponding value is stored. A map implemented by a hash table is called a hash map.
Hash is the chosen hash function, hLen is the length of the output of the hash function in bytes, k is the length of the RSA modulus n in bytes, M is the message to be padded, with length mLen (at most = bytes),
The salt and hash are then stored in the database. To later test if a password a user enters is correct, the same process can be performed on it (appending that user's salt to the password and calculating the resultant hash): if the result does not match the stored hash, it could not have been the correct password that was entered.
Hash-based signature schemes use one-time signature schemes as their building block. A given one-time signing key can only be used to sign a single message securely. Indeed, signatures reveal part of the signing key. The security of (hash-based) one-time signature schemes relies exclusively on the security of an underlying hash function.
In cryptography, the Fiat–Shamir heuristic is a technique for taking an interactive proof of knowledge and creating a digital signature based on it. This way, some fact (for example, knowledge of a certain secret number) can be publicly proven without revealing underlying information.
A BLS digital signature, also known as Boneh–Lynn–Shacham [1] (BLS), is a cryptographic signature scheme which allows a user to verify that a signer is authentic.. The scheme uses a bilinear pairing:, where ,, and are elliptic curve groups of prime order , and a hash function from the message space into .