When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    For example, in the Carnot cycle, while the heat flow from a hot reservoir to a cold reservoir represents the increase in the entropy in a cold reservoir, the work output, if reversibly and perfectly stored, represents the decrease in the entropy which could be used to operate the heat engine in reverse, returning to the initial state; thus the ...

  3. Entropy (order and disorder) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(order_and_disorder)

    Owing to these early developments, the typical example of entropy change ΔS is that associated with phase change. In solids, for example, which are typically ordered on the molecular scale, usually have smaller entropy than liquids, and liquids have smaller entropy than gases and colder gases have smaller entropy than hotter gases.

  4. Introduction to entropy - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_entropy

    This law of entropy increase quantifies the reduction in the capacity of an isolated compound thermodynamic system to do thermodynamic work on its surroundings, or indicates whether a thermodynamic process may occur. For example, whenever there is a suitable pathway, heat spontaneously flows from a hotter body to a colder one.

  5. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    That is, the state of a natural system itself can be reversed, but not without increasing the entropy of the system's surroundings, that is, both the state of the system plus the state of its surroundings cannot be together, fully reversed, without implying the destruction of entropy. For example, when a path for conduction or radiation is made ...

  6. Entropy (classical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(classical...

    Figure 1. A thermodynamic model system. Differences in pressure, density, and temperature of a thermodynamic system tend to equalize over time. For example, in a room containing a glass of melting ice, the difference in temperature between the warm room and the cold glass of ice and water is equalized by energy flowing as heat from the room to the cooler ice and water mixture.

  7. Entropy (energy dispersal) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(energy_dispersal)

    The term "entropy" has been in use from early in the history of classical thermodynamics, and with the development of statistical thermodynamics and quantum theory, entropy changes have been described in terms of the mixing or "spreading" of the total energy of each constituent of a system over its particular quantized energy levels.

  8. Entropy as an arrow of time - Wikipedia

    en.wikipedia.org/wiki/Entropy_as_an_arrow_of_time

    Entropy is one of the few quantities in the physical sciences that require a particular direction for time, sometimes called an arrow of time. As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease. Thus, entropy measurement is a way of distinguishing the past from ...

  9. Standard molar entropy - Wikipedia

    en.wikipedia.org/wiki/Standard_molar_entropy

    In chemistry, the standard molar entropy is the entropy content of one mole of pure substance at a standard state of pressure and any temperature of interest. These are often (but not necessarily) chosen to be the standard temperature and pressure .