Search results
Results From The WOW.Com Content Network
In computer science, an algorithm for matching wildcards (also known as globbing) is useful in comparing text strings that may contain wildcard syntax. [1] Common uses of these algorithms include command-line interfaces, e.g. the Bourne shell [2] or Microsoft Windows command-line [3] or text editor or file manager, as well as the interfaces for some search engines [4] and databases. [5]
The wildcard pattern (often written as _) is also simple: like a variable name, it matches any value, but does not bind the value to any name. Algorithms for matching wildcards in simple string-matching situations have been developed in a number of recursive and non-recursive varieties.
In computer science, the Krauss wildcard-matching algorithm is a pattern matching algorithm. Based on the wildcard syntax in common use, e.g. in the Microsoft Windows command-line interface, the algorithm provides a non-recursive mechanism for matching patterns in software applications, based on syntax simpler than that typically offered by regular expressions.
For example, the word "encyclopedia" is a sequence of symbols in the English alphabet, a finite set of twenty-six letters. Since a word can be described as a sequence, other basic mathematical descriptions can be applied. The alphabet is a set, so as one would expect, the empty set is a subset. In other words, there exists a unique word of ...
In computer science, in the problem of searching for duplicate code, the source code for a given routine or module may be transformed into a parameter word by converting it into a sequence of tokens, and for each variable or subroutine name, replacing each copy of the same name with the same wildcard character. If code is duplicated, the ...
The word problem for an algebra is then to determine, given two expressions (words) involving the generators and operations, whether they represent the same element of the algebra modulo the identities. The word problems for groups and semigroups can be phrased as word problems for algebras. [1]
These vectors capture information about the meaning of the word based on the surrounding words. The word2vec algorithm estimates these representations by modeling text in a large corpus . Once trained, such a model can detect synonymous words or suggest additional words for a partial sentence.
The (standard) Boolean model of information retrieval (BIR) [1] is a classical information retrieval (IR) model and, at the same time, the first and most-adopted one. [2] The BIR is based on Boolean logic and classical set theory in that both the documents to be searched and the user's query are conceived as sets of terms (a bag-of-words model).