When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    The trivial case of the angular momentum of a body in an orbit is given by = where is the mass of the orbiting object, is the orbit's frequency and is the orbit's radius.. The angular momentum of a uniform rigid sphere rotating around its axis, instead, is given by = where is the sphere's mass, is the frequency of rotation and is the sphere's radius.

  3. Angular momentum operator - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum_operator

    In simpler terms, the total angular momentum operator characterizes how a quantum system is changed when it is rotated. The relationship between angular momentum operators and rotation operators is the same as the relationship between Lie algebras and Lie groups in mathematics, as discussed further below. The different types of rotation ...

  4. Rotation around a fixed axis - Wikipedia

    en.wikipedia.org/wiki/Rotation_around_a_fixed_axis

    The greater the angular momentum of the spinning object such as a top, the greater its tendency to continue to spin. The angular momentum of a rotating body is proportional to its mass and to how rapidly it is turning. In addition, the angular momentum depends on how the mass is distributed relative to the axis of rotation: the further away the ...

  5. Rotation operator (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_operator_(quantum...

    Classically we have for the angular momentum =. This is the same in quantum mechanics considering and as operators. Classically, an infinitesimal rotation of the vector = (,,) about the -axis to ′ = (′, ′,) leaving unchanged can be expressed by the following infinitesimal translations (using Taylor approximation):

  6. Relativistic angular momentum - Wikipedia

    en.wikipedia.org/wiki/Relativistic_angular_momentum

    For reference and background, two closely related forms of angular momentum are given. In classical mechanics, the orbital angular momentum of a particle with instantaneous three-dimensional position vector x = (x, y, z) and momentum vector p = (p x, p y, p z), is defined as the axial vector = which has three components, that are systematically given by cyclic permutations of Cartesian ...

  7. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    Also in some frames not tied to the body can it be possible to obtain such simple (diagonal tensor) equations for the rate of change of the angular momentum. Then ω must be the angular velocity for rotation of that frames axes instead of the rotation of the body. It is however still required that the chosen axes are still principal axes of ...

  8. Angular mechanics - Wikipedia

    en.wikipedia.org/wiki/Angular_mechanics

    A diagram of angular momentum. Showing angular velocity (Scalar) and radius. In physics, angular mechanics is a field of mechanics which studies rotational movement. It studies things such as angular momentum, angular velocity, and torque. It also studies more advanced things such as Coriolis force [1] and Angular aerodynamics.

  9. Rigid body dynamics - Wikipedia

    en.wikipedia.org/wiki/Rigid_body_dynamics

    The fundamental equation describing the behavior of a rotating solid body is Euler's equation of motion: = = + = + = + where the pseudovectors τ and L are, respectively, the torques on the body and its angular momentum, the scalar I is its moment of inertia, the vector ω is its angular velocity, the vector α is its angular acceleration, D is ...