Search results
Results From The WOW.Com Content Network
Receptor proteins can be classified by their location. Cell surface receptors, also known as transmembrane receptors, include ligand-gated ion channels, G protein-coupled receptors, and enzyme-linked hormone receptors. [1] Intracellular receptors are those found inside the cell, and include cytoplasmic receptors and nuclear receptors. [1]
Receptors may bind with some molecules (ligands) or may interact with physical agents like light, mechanical temperature, pressure, etc. Reception occurs when the target cell (any cell with a receptor protein specific to the signal molecule) detects a signal, usually in the form of a small, water-soluble molecule, via binding to a receptor ...
Cell surface receptors (membrane receptors, transmembrane receptors) are receptors that are embedded in the plasma membrane of cells. [1] They act in cell signaling by receiving (binding to) extracellular molecules. They are specialized integral membrane proteins that allow communication between the cell and the extracellular space.
Receptor proteins on the cell surface have the ability to bind specific signaling molecules secreted by other cells. Cell signaling allows cells to communicate with adjacent cells, nearby cells and even distant cells . This binding induces a conformational change in the receptor which, in turn, elicits a response in the corresponding cell.
The oldest and most widely used expression systems are cell-based and may be defined as the "combination of an expression vector, its cloned DNA, and the host for the vector that provide a context to allow foreign gene function in a host cell, that is, produce proteins at a high level".
The B-cell receptor (BCR) is a transmembrane protein on the surface of a B cell. A B-cell receptor is composed of a membrane-bound immunoglobulin molecule and a signal transduction moiety. The former forms a type 1 transmembrane receptor protein, and is typically located on the outer surface of these lymphocyte cells. [1]
G protein-coupled receptors are all metabotropic receptors. When a ligand binds to a G protein-coupled receptor, a guanine nucleotide-binding protein, or G protein, activates a second messenger cascade which can alter gene transcription, regulate other proteins in the cell, release intracellular Ca 2+, or directly affect ion channels on the ...
G proteins are coupled to the C-terminal end of the chemokine receptor to allow intracellular signaling after receptor activation, while the N-terminal domain of the chemokine receptor determines ligand binding specificity. [14]