Search results
Results From The WOW.Com Content Network
Rowland (2008) proved that this sequence contains only ones and prime numbers. However, it does not contain all the prime numbers, since the terms gcd(n + 1, a n) are always odd and so never equal to 2. 587 is the smallest prime (other than 2) not appearing in the first 10,000 outcomes that are different from 1. Nevertheless, in the same paper ...
Except for 2 and 5, all prime numbers end in 1, 3, 7, or 9. Dirichlet's theorem states that asymptotically, 25% of all primes end in each of these four digits. However, empirical evidence shows that, for a given limit, there tend to be slightly more primes that end in 3 or 7 than end in 1 or 9 (a generation of the Chebyshev's bias). [ 35 ]
The Riemann hypothesis states that the zeros of the zeta-function are all either negative even numbers, or complex numbers with real part equal to 1/2. [96] The original proof of the prime number theorem was based on a weak form of this hypothesis, that there are no zeros with real part equal to , [97] [98] although other more elementary ...
Any prime number is prime to any number it does not measure. [note 7] Proposition 30 If two numbers, by multiplying one another, make the same number, and any prime number measures the product, it also measures one of the original numbers. [note 8] Proof of 30 If c, a prime number, measure ab, c measures either a or b. Suppose c does not measure a.
Euclid offered a proof published in his work Elements (Book IX, Proposition 20), [1] which is paraphrased here. [2] Consider any finite list of prime numbers p 1, p 2, ..., p n. It will be shown that there exists at least one additional prime number not included in this list. Let P be the product of all the prime numbers in the list: P = p 1 p ...
In computational number theory, the Lucas test is a primality test for a natural number n; it requires that the prime factors of n − 1 be already known. [ 1 ] [ 2 ] It is the basis of the Pratt certificate that gives a concise verification that n is prime.
The prime constant is the real number whose th binary digit is 1 if is prime and 0 if is composite or 1. [ 1 ] In other words, ρ {\displaystyle \rho } is the number whose binary expansion corresponds to the indicator function of the set of prime numbers .
f has degree at most p − 2 (since the leading terms cancel), and modulo p also has the p − 1 roots 1, 2, ..., p − 1. But Lagrange's theorem says it cannot have more than p − 2 roots. Therefore, f must be identically zero (mod p), so its constant term is (p − 1)! + 1 ≡ 0 (mod p). This is Wilson's theorem.